Skip to main content

Is it always one thing or the other in quantum theory?

Image © EPFL 2015
We have a report from the Ecole Polytechnique Federale de Lausanne (EPFL) of 'a photograph of light as both a particle and a wave.' HT to Ian Bald for pointing this out - the paper dates back to March, but I didn't spot it at the time.

It's interesting to dig in a bit and see a) is this true and b) is it the end of Bohr's assertion as part of his concept of complementarity that light could act like a wave or a particle but never both at the same time?

The experiment is complex enough that it's a little fuzzy when it comes to the interpretation. What the experimenters did was reported by the EPFL's press people as follows. The experimenters fired a laser at a metallic nanowire. Some of the energy from the photons in the light stimulated electrons in the wire, which meant that 'light' travelled along the wire in two directions. When these waves met they formed a standing wave which generated emitted light. They then shot electrons at the wire which interacted with the emitted light in a quantum fashion, slowing down or speeding up and producing the rather pretty image.

The argument in the press release is that this simultaneously demonstrates the wave and particle nature of the light - the wave in the standing wave and the particle aspect is in the interaction with the incoming electrons that produces the image.

This is a really interesting experiment. As Fabrizio Carbone, the leader of the EPFL team says, 'This experiment demonstrates that, for the first time ever, we can film quantum mechanics – and its paradoxical nature – directly. Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing.' However I'm a bit hesitant to say that we are simultaneously observing wave and particle behaviour in the same bit of light.

Unless I'm misunderstanding what's going on, we have waves in the nanowire, which strictly speaking are plasmonic, i.e. quantised vibrations rather than themselves conventional electromagnetic waves. These waves are causing electrons in the wire to accelerate, generating photons which are emitted and then interact with the incoming detector photons. So the wave-like process is generating the photons. But they are totally different entities. Of itself this kind of mix isn't uncommon - wave-like behaviour in a radio aerial generates the photons of the emitted radio - but being able to see the impact of both in the same image is. So complementarity is safe.

Whatever the correct interpretation, we must not fall into the trap of confusing models with reality. Light is not a wave, nor is it a particle (nor is it a fluctuation in a quantum field) - these are models that help us get a grasp of its behaviour, but in the end light is light, where waves, particles and fields are all models based on our experience of the macro world. However, it's certainly interesting stuff! You can read the full paper here.

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re