Skip to main content

Eureka: How Invention Happens - Gavin Weightman ***




Updated for paperback version
There's an interesting point made by Gavin Weightman in Eureka - the way that many inventions were the brainchild of an amateur, a tinkerer, who managed to get the invention going pretty badly, before it was then picked up elsewhere, typically by a larger organization which carried it forward to become a commercial or practical product. It's certainly true of the five examples he focusses on in the book.

These are powered flight, television, the barcode, the PC and the mobile phone (cellphone). In each case, Weightman gives us a long section in which he introduces that individual (or small team) of amateurs, plunges back into their historical antecedents - because invention doesn't come from nowhere, there is plenty of groundwork that precedes it - and then takes us through the detailed work of the amateurs and the way that the invention was then taken up and commercialised.

For me, the two best sections were the ones on TV and the barcode, in part because I'd read more detailed books on the other topics. The TV section is interesting because it gives the best balance between Baird and Farnsworth I've seen. In my youth (in the UK) John Logie Baird was the only name you ever heard when it came to inventing the television, while more recently the magnificently named Philo T. Farnsworth has taken centre stage (because unlike Baird, his TV concept was not a dead-end mechanical approach), but Weightman puts both in their rightful positions. 

The barcode section was particularly interesting because it's something I've never read about, and it's easy to overlook the barcode as an invention, even though it plays a major role every time we go shopping, not to mention its importance in inventory and stock control. It was fascinating to learn that it was inspired by Morse code. My only real criticism of this chapter is the way that it concentrates solely on the hardware, where the development of the software was equally crucial in the story.

These are, without doubt, interesting stories, but the reason I haven't given the book a higher star rating is that it's not a great read. The historical sections get rather dull and over-detailed (this is particularly the case in the flight section, not helped by jumping around wildly chronologically in a way that really doesn't help the reader). I also think that the central thesis that inventions come from isolated amateurs, which the author presents as if it's a new observation, would have been better if he had read more around the study of creativity and innovation. It's an observation dating back for decades that in the creative field ideas come from individuals, while development tends to come from teams, which is why in part there was a strong historical tendency for the more individual-oriented UK of the early to mid 20th Century to come up with inventions, while the US, where businesses tended to have a stronger team approach, was better at developing those inventions to finished products.

The other problem with the thesis is selectivity. It's certainly true that these inventions were the work of amateurs, but it's not true of, say, the laser and a whole host of modern inventions where the technology level is often too high for amateurs to get anywhere in a garage lab. An interesting set of stories, then, but could have been told better and the central thesis could do with some expansion and extra sophistication. 

Paperback:  

Kindle:  

Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur