Skip to main content

The Vital Question - Nick Lane ****

This is a bravura, hit-you-between-the-eyes popular science book which, were it not for a couple of failings, would not only be five star, but quite possibly the best popular science book of the year so far.

Nick Lane succeeds on two levels. One is opening the eyes of a relatively ignorant reader on the subject of biology like me to the sheer, magnificent complexity of biological mechanisms. I was aware, for instance, of mitochondria as the power sources of eukaryotic cells,  but hadn't a clue just how complex the molecular machines that function across their boundary to the wider cell and inside each mitochondrion were. It is truly mind boggling and wonderful. At one point, Lane comments with raised virtual eyebrows on the number of physicists now working in biology - but that's not at all surprising when it becomes plain how much of what goes on is down to pure physics, whether it's pumping protons, passing electrical charges or quantum tunnelling. Lane does resort to the odd exclamation mark, normally frowned on by writers, but for once it seems entirely justified.

The other impressive aspect of the book might be less familiar even to some biologists when Lane explores the origins of life - no longer from an organic 'soup', but now thought to be primarily from water and carbon dioxide - how the energy requirements of life can sometimes tell us more than genetics about the way living cells turned out, how our complex cells seem to have developed initially from the embedding of bacteria into another prokaryotes, this time archaea. And that's just the start in a complex ride that involves changing membranes from one kind to another, the spontaneous formation of a nucleus, the changing nature of DNA and far more. It even explains why practically all eukaryotes like us have sexual reproduction. Perhaps most surprising is that the earliest common ancestor of eukaryotes seems to have already had most of these complex mechanisms and structures, for reasons that again Lane makes very plausible. It's fascinating and really changes the idea of how various kinds of living cells may have come into being.

So what's the downside? The writing is rather repetitious. It's amusing that early on Lane refers to this as a short book, saying that it is as short as it could possibly be to get the point across. But it is, in fact, a middle-sized book that could have been significantly more short and to the point with some of the repetition, particularly in the first few chapters, taken out.

More significantly, I think the book suffers from Feynman's ague - when the great American physicist was involved in biology he bemoaned the vast quantity of labels that had to be learned to get anywhere and I found there were plenty of pages where I didn't really understand what Lane was talking about because I had either never come across, or had already forgotten the explanation of yet another tedious term. The book really could have benefited from a co-author who wasn't a biologist to say 'you've lost me' ever few pages (or in some cases every few lines). I got the overall gist, but I felt I was missing out on some of the finer points and did skip a few pages where it was all getting too much for me.

Despite those misgivings, though, there is so much to discover in this book. I would recommend it for either of my two reasons for liking it alone - but taken together they make a potent package that will truly bring out the sense of wonder as only good science can.


Using these links earns us commission at no cost to you
Review by Brian Clegg


Popular posts from this blog

Tim Woollings - Four Way Interview

Tim Woollings is an Associate Professor in Physical Climate Science at the University of Oxford, leading a team of researchers in the Atmospheric Dynamics group. He obtained his PhD in Meteorology in 2005 and since then has worked on a variety of topics spanning weather prediction, atmospheric dynamics and circulation, and the effects of climate change. He has studied how the jet stream varies over weeks, years, and decades, and how we can better predict these changes. He was a contributing author on three chapters of the IPCC Fifth Assessment Report. Tim worked at the University of Reading as a postdoc, research fellow and then lecturer before moving to the University of Oxford in 2013. He is now the Oxford Joint Chair of the Met Office Academic Partnership. His new book is Jet Stream.

Why climate?

It has never been more important to learn about how our climate system works, and how we are affecting it. You certainly get a lot of satisfaction when your work touches on hugely important …

The Apollo Chronicles - Brandon Brown *****

There were two reasons I wasn't expecting much from this book. Firstly, there have been so many titles on the Apollo programme and the space race. And secondly, a book that focusses on the engineering involved would surely be far too much at the nut and bolt level (literally), missing out on the overarching drama that makes the story live. Also there were so many people involved - 400,000 is mentioned - that we couldn't have much human interest because we would be bombarded with lists of names.

Instead, I was charmed by Brandon Brown's account. His father was one of the engineers, but he isn't given undue prominence - Brown picks out a handful of characters and follows them through, bringing in others as necessary, but never overwhelming us with names. And while it's true that there is a lot of nitty gritty engineering detail, it rarely becomes dull. Somehow, Brown pulls off the feat of making the day-to-day, hectic engineering work engaging.

I think in part this …

Saturn – William Sheehan ****

This book marks something of a milestone in my reviewing career: it’s the first time I’ve seen an excerpt from one of my reviews printed on the back cover. It comes from my review of Sheehan’s previous book, on Mercury, which I said ‘easily convinced me the Solar System’s 'least interesting' planet is still a pretty fascinating place.’ That wasn’t an easy task for the author, given Mercury’s unspectacular appearance and reputation – but Saturn is a different matter. With its iconic rings, easily visible through a small telescope, it’s the favourite planet of many amateur astronomers. For space scientists, too, it’s a prime target – given that two of its moons, Titan and Enceladus, look like the kind of places we might find alien life. So Sheehan’s challenge this time wasn’t to find enough material to fill 200 pages, but to distil a potentially huge subject down to that size.

He meets this challenge just as successfully as the previous one – but not quite in the way I was expect…