Skip to main content

To Explain the World - Steven Weinberg *****

There was a time when one approached a popular science book by a 'real' working scientist with trepidation. There was little doubt they would get the science right, but the chances are it would read more like a textbook or dull lecture notes. Thankfully, there are now a number of scientists who make pretty good writers too, but one area they tend to fall down on in history of science. I've lost count of the number of popular science titles by working scientists (including, infamously also the reboot of the Cosmos TV show, hosted by Neil deGrasse Tyson) which roll out the tedious and incorrect suggestion that Giordano Bruno was burned for his advanced scientific ideas.

Luckily, though, Steven Weinberg, as well as being a Nobel Prize winning physicist for his work on the electroweak theory (and all round nice guy), has made something of a hobby of history of science and his accounts are largely well done. I might disagree with some of his emphasis, and there are a couple of arguable points when dealing with Newton, both in his introduction of centripetal force and in the claim that the Royal Society published Principia, but on the whole the history is sound.

Perhaps surprisingly for a modern physicist, whose working life has been focussed on the peculiarities of particle theory and the significance of symmetry, Weinberg chooses to write about the period when the scientific method was evolving. So he starts with the Ancient Greeks and runs through to Newton, with only a short summary chapter filling in everything else in physics.

I have given the book five stars because I think that Weinberg builds this structure beautifully, showing how very different the ancient ideas of natural philosophy were from natural science and explaining in far more detail than I've ever seen in a popular work how the different models of the universe (what we would now call the solar system) were developed through time, including really interesting points like the way that Ptolemy-style epicycles were maintained in the early Copernican era.

He is also very good on the period when Arab scientists did original work and brought the mostly forgotten Greek works to the attention of the world. Here he treads what feels a very sound line between the older tendency to play down the Arab contribution and the more recent tendency to allow this period more of a contribution than it really had. Weinberg is perhaps a little sparse in his appreciation of the medieval period, ignoring Grosseteste and only having a passing reference  to one thing that Roger Bacon mentions, but again he then very much puts Descartes and Francis Bacon in their proper place, rather than giving too much weight to their work.

Reading this book you will find out a whole lot about Ancient Greek science plus the contributions of Galileo and Newton, and it will be a rewarding read. Don't expect a lot of context - there is only very sketchy biographical information - so the content can be a little dry in places, but Weinberg's impressive grasp of the gradual evolution of the scientific method more than makes up for this.

The only slight surprise was that the book is significantly shorter than it looks. The main text ends on page 268 of 416. The rest (apart from the index) is a series of 'technical notes' which are effectively textbook explanations of various developments in physics from some Greek basics through to Newtonian matters like planetary masses and conservation of momentum. I'll be surprised if 1 in 100 readers makes it through these. There has also been some carping that Weinberg expects ancient philosophers to take too modern a view, so tends to be over-critical - it's a matter of taste, I suspect.

So, highly recommended if you want a history of the development of physics from ancient Greece through to Newton with a lot of detail on the way that both the model of the solar system and the basics of mechanics were developed in that period. Weinberg's writing may be a little dry with its lack of biographical context, but it is rarely dull as he keeps the ideas flying.

Hardback:  
Paperback:  
Kindle:  
Audio CD:  
Review by Brian Clegg

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…