Skip to main content

Frank Close - Four Way Interview

Frank Close is Professor of Physics at the University of Oxford and a Fellow of Exeter College, Oxford. He was formerly vice president of the British Association for Advancement of 
Science, Head of the Theoretical Physics Division at the Rutherford Appleton Laboratory and Head of Communications and Public Education at CERN. He is the winner of the Kelvin Medal of the Institute of Physics for his "outstanding contributions to the public 
understanding of physics." . His latest book is Half Life, a scientific biography of nuclear scientist (and possible spy) Bruno Pontecorvo.

Why Science?

I always wanted to know: why? Decades later I discovered that science deals with 'how?', but by then I was hooked. Chemistry at school consisted of lots of facts, too many to remember, but it was the chemistry teacher who told me that everything is made of atoms, which in turn are all made of electrons encircling a nucleus, and the only difference between one atomic element and the next is the number of protons. That such simplicity could lead to such richness astonished me then, and still does. It also gave me the hope that I could derive all of chemistry from this basic fact (a hope unfulfilled) and pointed me towards physics, eventually particle physics. I always loved numbers, and algebra, and was useless with experiments. That’s how I became a theoretical physicist. I still find it remarkable that by scribbling equations on pieces of paper, it is possible to deduce profound consequences about the nature of the universe, which experiments subsequently confirm. How can mathematics 'know' reality before we ourselves?

Why this book?

I wrote a book called Neutrino, the story of Ray Davis’ heroic forty year quest to detect these ghostly particles, which theory implied must be pouring from the sun in vast quantities. He survived long enough to collect a Nobel Prize, in 2002, at age 87. In the course of researching that book, I discovered that behind the scenes another physicist, Bruno Pontecorvo, had played a central role. However, halfway through his life he had defected to the Soviet Union at the height of the cold war, and missed out on one Nobel Prize as a result (he was unable to share in Davis’ Nobel, later, as Pontecorvo died in 1993). I began to research Pontecorvo’s life, and the question of why he had made the fateful flight to the USSR began to take centre stage. In addition to being a great physicist, had he also been a spy, as some conjectured? I discovered that he had lived in my home-town, and I found people who had known him, sixty-five years ago. I traced school-friends of his son, who had been twelve years old at the time, and they told me their memories of the disappearance. Then we discovered that one of the teachers at their school had worked for MI5, and suddenly I realised that I had an inside track to a spy mystery as well as a scientific biography. I met family members of two certain atomic spies, as well as several of Bruno Pontecorvo’s own relatives, along with others from the world of smoke and mirrors. My breakthrough was in unearthing an MI5 document that had been lost – or maybe 'lost' – which revealed that the infamous Kim Philby had played a central role in Pontecorvo’s disappearance. From which point, Half Life wrote itself. I am flattered that, having spent forty years as a physicist, reviewers are now describing me as an “historian”.

What next?

I am writing a short book about my fascination with solar eclipses, which began as an eight years old schoolboy and, since I was present at a total solar eclipse in 1999, have become an obsession. In my new guise as 'historian' of scientific affairs, I am researching another atomic physics espionage mystery from the Second World War. This has grown out of my research into Half Life, which revealed some previously unknown facts about Klaus Fuchs, his mentor Rudolf Peierls – the British father of the atomic bomb - and the role of MI5 and the FBI. But as there may be literary spies out there, I shall say no more for now!

What’s exciting you right now?

In my own field of particle physics, I am eagerly awaiting the re-start of the Large Hadron Collider at higher energies. Having discovered the Higgs boson, will the LHC find evidence for supersymmetry, or reveal the dark matter particles, which, according to cosmologists, are more copious than the stuff that we presently know? Only Nature knows the answers so far, but the weird property of mathematics, which I mentioned at the start, suggests that discoveries are waiting to be made. Outside particle physics, I am intrigued about consciousness: how many atoms are needed to gather together before they are self-aware? Unfortunately I have no idea how to answer this question. Other than that, I hope that answers will come to some of these questions while I am still capable of sharing my excitement about them, and their significance, in print sometime in the future.

Comments

Popular posts from this blog

Patricia Fara - Four Way Interview

Patricia Fara lectures in the history of science at Cambridge University, where she is a Fellow of Clare College. She was the President of the British Society for the History of Science (2016-18) and her prize-winning book, Science: A Four Thousand Year History (OUP, 2009), has been translated into nine languages. An experienced public lecturer, Patricia Fara appears regularly in TV documentaries and radio programmes. She also contributes articles and reviews to many popular magazines and journals, including History Today, BBC History, New Scientist, Nature and the Times Literary SupplementHer new book is Erasmus Darwin.

Why history of science?
I read physics at university, but half-way through the course I realised that had been a big mistake. Although I relished the intellectual challenge, I was bored by the long hours spent lining up recalcitrant instruments in dusty laboratories. Why was nobody encouraging us to think about the big questions – What is gravity? Does quantum mechani…

The Idea of the Brain: Matthew Cobb *****

Matthew Cobb is one of those people that you can’t help but admire but also secretly hate just a little bit for being so awesome. He is professor for zoology at the University of Manchester with a sizable teaching load that he apparently masters with consummate skill. He’s a scientific researcher, who researches the sense of smell of fruit fly maggots; I kid you not!  He’s also an attentive and loving family father but he still finds time and energy to write brilliant history of science books, three to date. His first, The Egg and Sperm Race, describes the search for the secret of human reproduction in the seventeenth and eighteenth centuries and is one of my favourite history of science books, on the period. His second, Life’s Greatest Secret is a monster, both in scope and detail, description of the hunt to decipher the structure and function of DNA that along the way demolishes a whole boatload of modern history of science myths. The most recent, and the subject of this review, is

The Big Ideas in Science - Jon Evans ***

The starting point of a review like this has to be to congratulate the author on his achievement, Jon Evans, because getting all of science into one relatively short book is a massive (and thankless) task. Although inevitably the result is a fairly hectic dash through the material, with limited space for subtleness, Evans manages to make the experience readable and has a light touch that is effective without becoming too simplistic.

There is only one reason this book doesn't get four stars - it's not the quality of the writing but rather the selection of the contents. Of course, there is bound to be plenty of stuff missed out - how else could you get all of science into 269 pages? But the balance is strangely skewed. Chemistry is pretty much omitted, though aspects of chemistry occur under other headings. But for me, the real problem is that physics is really under-represented. It's interesting to use Jim Al-Khalili's recent excellent physics summary title The World Acc…