Skip to main content

How to be a good publicist - Brian Clegg - Feature

Here at popularscience.co.uk we get offered a lot of books for review, and often we turn them down. This should have been a review of one we said ‘Yes’ to – a book called Unification of Electromagnetism and Gravity by Selwyn Wright. Unfortunately, the book does not fit our criteria.
There are three key essentials we insist on, and this went wrong on every count. So here’s the quick guide to how to be a good publicist from our viewpoint.
1) We don’t usually review self-published books, particularly ones with new theories, unless they are by someone with appropriate qualifications. Don’t bend the truth. Clearly for a book on this topic we need a well-qualified physicist, and the press release describes Dr Wright as a ‘physicist’ and a ‘retired Stanford and NASA physicist.’ (Elsewhere I have seen him described as a ‘former professor of physics at Huddersfield University’.) But as far as I can see – I’m happy to be proved wrong – Dr Wright’s doctorate was in engineering, and his work has largely been in acoustic engineering.
Don’t get me wrong, I have nothing against engineers – they do a brilliant job, and to be an academic engineer needs a high level of expertise. But engineering is not physics, and being an acoustic engineer doesn’t make you an expert in relativity. The point here is that popularscience.co.uk is in no position to judge the quality of a book describing a new theory (we don’t claim to be experts in anything, apart from what makes a good popular science book!) – so it’s a reasonable assumption as a minimum that a book we review should be written by someone with appropriate qualifications, and that inappropriate claims are not made.
2) We only review books for the general reader. So publicist, have you read and understood the book? The press release is titled ‘A theory of relativity for the lay person’, but almost from page 1 it was clear this was not the case. The arguments are not put in terms you can understand without a reasonable training in maths and physics. Would you honestly expect a general reader to cope with a page like this:

… and there are many such pages. If the publicist really thinks this is for the lay person, my suspicion is that he hasn’t read it.
3) Don’t claim that new theory ‘disproves’ another theory (especially one by Einstein). This is one we see so often. The press release tells us that Dr Wright has ‘finally showed that Einstein’s ether-less aspect of relativity is in error.’ The problem is you can’t disprove a theory with another theory – only experimental evidence can do this. You can come up with an alternative theory that can be put alongside an existing one, see which best matches the evidence and use the one that gets a scientific consensus as the current best theory – but you can’t say ‘my theory proves yours is wrong.’
I assumed that this was a result of the publicist not understanding science, but I’m not entirely sure having read the start of the book. We hear repeatedly phrases along the line of ‘There is a fundamental requirement, confirmed by measurement, that all waves need a propagation medium to propagate.’ Variants of this are repeated again and again, page after page – which doesn’t make for great reading, but I also have problems with this in terms of the scientific method. (I ought to stress once more that I am not qualified to comment on the detail of Dr Wright’s theory, merely the approach taken here.)
What we seem to have  is a problem of semantics. It’s a truism that if you define a wave as an oscillation in a medium, there has to be a medium. And this is the case with the sound waves with which Dr Wright has much expertise. But you can’t assume, just because something is called ‘a wave’ that it is also an oscillation in a medium, as these repeated statements appear to do. You, could, for instance, mean ‘a particle that has a property called phase that varies with time, resulting in wave-like behaviour’. And that would not require a medium. An electron, for example, is such a particle, but it certainly doesn’t require a medium.
Elsewhere, Dr Wright criticises special relativity because in the case of two spaceships ‘According to Einstein’s relativity, either ship could be considered moving and the other stationary. Either set of astronauts could be considered to age less than those on the other ship. Amazingly, against all logic, both situations were considered possible, even at the same time, which is physically impossible (non causal) in the real world.’ Again, the attempt is to disprove a theory not by appeal to experiment, but to common sense. But science doesn’t work like that. You only have to consider a very simple light clock experiment to realise that the viewpoint he describes as ‘physically impossible’ is what actually happens – no longer impossible because both clocks are seen from different frames of reference.
The fact is that relativity is well supported by experimental evidence. There is also good evidence that light is not a conventional wave – since the start of the 20th century there have been many observations and measurements that light can act as a particle. Quantum theory means that we can consider light as being like a wave, a particle or a fluctuation in a quantum field. All these are models that are used to produce results – but there is no suggestion that light is a wave in the same sense that sound is. There is a huge amount of experimental evidence that this is the case. Yet I didn’t spot any reference to quantum theory here.
So, unfortunately, this book failed on all three criteria. The author didn’t have the right credentials to be giving us a new theory, the book isn’t suitable for the general reader, and the author is not presenting well-documented experimental evidence to disprove a theory in any consistent way. Sorry, folks, that’s not how we do business.

Comments

Popular posts from this blog

I, Mammal - Liam Drew *****

It's rare that a straightforward biology book (with a fair amount of palaeontology thrown in) really grabs my attention, but this one did. Liam Drew really piles in the surprising facts (often surprising to him too) and draws us a wonderful picture of the various aspects of mammals that make them different from other animals. 

More on this in a moment, but I ought to mention the introduction, as you have to get past it to get to the rest, and it might put you off. I'm not sure why many books have an introduction - they often just get in the way of the writing, and this one seemed to go on for ever. So bear with it before you get to the good stuff, starting with the strange puzzle of why some mammals have external testes.

It seems bizarre to have such an important thing for passing on the genes so precariously posed - and it's not that they have to be, as it's not the case with all mammals. Drew mixes his own attempts to think through this intriguing issue with the histor…

Foolproof - Brian Hayes *****

The last time I enjoyed a popular maths book as much as this one was reading Martin Gardner’s Mathematical Puzzles and Diversions as a teenager. The trouble with a lot of ‘fun’ maths books is that they cover material that mathematicians consider fascinating, such as pairs of primes that are only two apart, which fail to raise much excitement in normal human beings. 

Here, all the articles have something a little more to them. So, even though Brian Hayes may be dealing with something fairly abstruse-sounding like the ratio of the volume of an n-dimensional hypersphere to the smallest hypercube that contains it, the article always has an interesting edge - in this case that although the ‘volume’ of the hypersphere grows up to the fifth dimension it gets smaller and smaller thereafter, becoming an almost undetectable part of the hypercube.

If that doesn’t grab you, many articles in this collection aren’t as abstruse, covering everything from random walks to a strange betting game. What'…

A Galaxy of Her Own - Libby Jackson ****

This is an interesting book, even if it probably tries to be too many things to too many people. I wondered from the cover design whether it was a children's book, but the publisher's website (and the back of the book) resolutely refuse to categorise it as such. The back copy doesn't help by saying that it will 'inspire trailblazers and pioneers of all ages.' As I belong to the set 'all ages' I thought I'd give it a go.

Inside are featured the 'stories of fifty inspirational women who have been fundamental to the story of humans in space.' So, in some ways, A Galaxy of Her Own presents the other side of the coin to Angela Saini's excellent Inferior. But, inevitably, given the format, it can hardly provide the same level of discourse.

Despite that 'all ages' comment and the lack of children's book labelling we get a bit of a hint when we get to a bookplate page in the form of a Galaxy Pioneers security pass (with the rather worrying…