Skip to main content

Einstein and the Quantum – A. Douglas Stone *****

This is without doubt a five star, standout book, though there are a couple of provisos that mean it won’t work for everyone.
If you ask someone who has read a bit of popular science about the founders of quantum theory they will mention names like Planck, Bohr, Schrödinger and Heisenberg – but as Douglas Stone points out, the most significant name in laying the foundations of quantum physics was its arch-critic, Albert Einstein. You may be aware that Einstein took Planck’s original speculation about quantised energy and turned it into a description of the action of real particles in his 1905 paper photoelectric effect that won him his Nobel Prize – but what is shocking to learn is just how much further Einstein went, producing a whole string of papers that made the development of quantum theory almost inevitable. It was Einstein, for instance, who came up the earliest form of wave/particle duality.
I have never read anything that gave detail on this fascinating period of the development of physics the way that Stone does. This isn’t really a scientific biography. Stone does dip into Einstein’s life, but often in a fairly shallow way. What is much more significant is the way he shows us the building blocks that would make the full quantum theory being put in place. It really is absolutely fascinating. Science writers like me tend to skip over large chunks of the way this developed, throwing in just the highlights, but Stone really gives us chapter and verse, without ever resorting to mathematics, demonstrating the route to quantum theory in a way, he suggests, that most working physicists have no ability to appreciate. Remarkable.
I have two provisos. A minor one is that Stone’s context is not as well-researched as his physics. We are told that Arrhenius moved to Europe from Sweden, perhaps a slight surprise for most Swedes to realise that they don’t live in Europe. And he calls Rutherford British – admittedly the great New Zealand physicist did most of his best work in the UK, but I’m not sure we can count him as our own.
The bigger warning is that this book isn’t going to work for everyone. While I found some of the explanations – notably of a Bose Einstein condensate – the clearest I’ve ever read, Stone does fall into the typical trap of the physicist-as-science-writer of assuming what comes naturally to him is equally accessible to the general reader. I don’t think he makes clear enough the basis in thermodynamics of the early work, perhaps assuming that the statistical mechanics of vibrating bodies, and other essentials that constantly turn up in the early workings, are sufficiently straightforward as classical physics that they don’t need much explanation. Without that clear foundation, his later explanations may be slightly hard going – but I can only say that if you really want a feel for where quantum physics came from to persevere and go with the flow, because it is well worth it.
P.S. I wish someone had told the cover designer how inappropriate the solar system-like atom picture on the cover is for the topic!
Hardback:  
Kindle:  
MP3 CD:  
Audio download:  
Review by Brian Clegg

Comments

  1. From Wikipedia: "Ernest Rutherford, 1st Baron Rutherford of Nelson, OM FRS[1] (30 August 1871 – 19 October 1937) was a New Zealand-born British physicist who became known as the father of nuclear physics"

    ReplyDelete
    Replies
    1. Hint: Wikipedia isn't always right. To call Rutherford British is imperialist at best.

      Delete

Post a Comment

Popular posts from this blog

De/Cipher - Mark Frary ****

I was a little doubtful when I first saw this book. Although it has the intriguing tagline 'The greatest codes ever invented and how to crack them' the combination of a small format hardback and gratuitous illustrations made me suspect it would be a lightweight, minimal content, Janet and John approach to codes and ciphers. Thankfully, in reality Mark Frary manages to pack a remarkable amount of content into De/Cipher's slim form.

Not only do we get some history on and instructions to use a whole range of ciphers, there are engaging little articles on historical codebreakers and useful guidance on techniques to break the simpler ciphers. The broadly historical structure takes the reader through basic alphabetic manipulation, keys, electronic cryptography, one time pads and so on, all the way up to modern public key encryption and a short section on quantum cryptography. 

We even get articles on some of the best known unsolved ciphers, such as the Dorabella and the Voynich ma…

Paul McAuley - Four Way Interview

Paul McAuley won the Philip K. Dick Award for his first novel and has gone on to win the Arthur C. Clarke, British Fantasy, Sidewise and John W. Campbell Awards. He gave up his position as a research biologist to write full-time. He lives in London. His latest novel is Austral.


Why science fiction?

For one thing, I fell in love with science fiction at an early age, and haven’t yet fallen out of love with it (although I have flirted with other genres). For another, we’re living in an increasingly science-fictional present. Every day brings headlines that could have been ripped from a science-fiction story. Giant robot battle: Who knew a duel between chainsaw-armed mech suits could be so boring? for instance. Or, Roy Orbison hologram to embark on UK tour in 2018. And looming above all this, like Hokusai’s famous wave, are the ongoing changes caused by global warming and climate change, which is just one consequence of human activity having become the dominant force of change on the planet…

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…