Skip to main content

Einstein and the Quantum – A. Douglas Stone *****

This is without doubt a five star, standout book, though there are a couple of provisos that mean it won’t work for everyone.
If you ask someone who has read a bit of popular science about the founders of quantum theory they will mention names like Planck, Bohr, Schrödinger and Heisenberg – but as Douglas Stone points out, the most significant name in laying the foundations of quantum physics was its arch-critic, Albert Einstein. You may be aware that Einstein took Planck’s original speculation about quantised energy and turned it into a description of the action of real particles in his 1905 paper photoelectric effect that won him his Nobel Prize – but what is shocking to learn is just how much further Einstein went, producing a whole string of papers that made the development of quantum theory almost inevitable. It was Einstein, for instance, who came up the earliest form of wave/particle duality.
I have never read anything that gave detail on this fascinating period of the development of physics the way that Stone does. This isn’t really a scientific biography. Stone does dip into Einstein’s life, but often in a fairly shallow way. What is much more significant is the way he shows us the building blocks that would make the full quantum theory being put in place. It really is absolutely fascinating. Science writers like me tend to skip over large chunks of the way this developed, throwing in just the highlights, but Stone really gives us chapter and verse, without ever resorting to mathematics, demonstrating the route to quantum theory in a way, he suggests, that most working physicists have no ability to appreciate. Remarkable.
I have two provisos. A minor one is that Stone’s context is not as well-researched as his physics. We are told that Arrhenius moved to Europe from Sweden, perhaps a slight surprise for most Swedes to realise that they don’t live in Europe. And he calls Rutherford British – admittedly the great New Zealand physicist did most of his best work in the UK, but I’m not sure we can count him as our own.
The bigger warning is that this book isn’t going to work for everyone. While I found some of the explanations – notably of a Bose Einstein condensate – the clearest I’ve ever read, Stone does fall into the typical trap of the physicist-as-science-writer of assuming what comes naturally to him is equally accessible to the general reader. I don’t think he makes clear enough the basis in thermodynamics of the early work, perhaps assuming that the statistical mechanics of vibrating bodies, and other essentials that constantly turn up in the early workings, are sufficiently straightforward as classical physics that they don’t need much explanation. Without that clear foundation, his later explanations may be slightly hard going – but I can only say that if you really want a feel for where quantum physics came from to persevere and go with the flow, because it is well worth it.
P.S. I wish someone had told the cover designer how inappropriate the solar system-like atom picture on the cover is for the topic!


Review by Brian Clegg


  1. From Wikipedia: "Ernest Rutherford, 1st Baron Rutherford of Nelson, OM FRS[1] (30 August 1871 – 19 October 1937) was a New Zealand-born British physicist who became known as the father of nuclear physics"

    1. Hint: Wikipedia isn't always right. To call Rutherford British is imperialist at best.


Post a Comment

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 

An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …