Skip to main content

The Golden Ticket: P, NP, and the Search for the Impossible – Lance Fortnow ***

There is good and bad news early on in this book about the P versus NP problem that haunts computing. The good news is that on the description I expected this to be a dull, heavy going book, and it’s not at all. Lance Fortnow makes what could be a fairly impenetrable and technical maths/computing issue light and accessible.
The bad news is that frustratingly he doesn’t actually tell you what P and NP mean for a long time, just gives rather sideways definitions of the problem along the lines of ‘P refers to the problems we can solve quickly using computers. NP refers to the problems to which we would like to find the best solution’, and also that he makes a couple of major errors early on, which make it difficult to be one hundred percent confident about the rest of the book.
The errors come in a section where he imagines a future where P=NP has been proved. This would mean you could write an algorithm to very efficiently match things and select from data. Fortnow suggests that our lives would be transformed. This is slightly cringe-making as fictional future histories often are, but the real problem is that he tells us that the algorithm would make it possible to do two things that I think just aren’t true.
First he says that from DNA you would be able to identify what a person looks like and their personality. Unfortunately, these are both strongly influenced by epigenetic/environmental issues. Anyone who knows adult identical twins (with the same basic DNA) will know that they can look quite different and certainly have very different personalities. And they will usually have been brought up in the same environment. Fortnow is forgetting one of the oldest essentials of computing – it doesn’t matter how good your algorithm is, GIGO – garbage in; garbage out.
The other, arguably worse error is that he says that it will be possible to have accurate weather forecasts going forward X days. This is so horribly wrong. He should have read my book Dice World. The reason you can’t predict the weather at all beyond about 10 days is nothing to do with the quality of the model/algorithm, it is because the system is chaotic. Firstly we just don’t know, and never can know, the initial conditions to enough decimal places not to deviate from the real world. When Lorenz first discovered chaos it was because he entered the starting values in his model to 4 decimal places rather than the 6 to which the model actually worked. It soon deviated from the previous run. We can’t measure things accurately enough. The other problem is that the weather system is so complex – hence the slightly misleading title of Lorenz’s famous paper Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? – that we can’t possible take into account enough inputs to ever have so good a model as to go forwards that far. Sorry, Lance, it ain’t going to happen.
For the rest, the first half or so of the book goes along pretty well, gradually opening up the nature of P and NP, the problems that are of interest and the ‘hardest’ NP complete problems. I found the main example, used throughout, a hypothetical world called Frenemy where everyone is either a friend or enemy of everyone else confusing and not particularly useful, but Fortnow gets plenty of good stuff in. After that it’s as if he rather runs out of material and it gets a bit repetitious or has rather tangential chapters.
Overall, despite the flaws, a much better and more readable book than I thought it was going to be – but probably best for maths/computing buffs rather than the general popular science audience.

Hardback 

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Make, Think, Imagine - John Browne ***

When you read a politician's memoirs you know that, nine times out of ten, it won't really quite work, because the message can't carry a whole book. It's reminiscent of the old literary agent's cry of 'Is it a book, or is it an article?' It's not that there aren't a lot of words in such tomes. It's almost obligatory for these books to be quite chunky. But it's a fair amount of work getting through them, and you don't feel entirely satisfied afterwards. Unfortunately, that's rather how John Browne (former head of oil giant BP)'s book comes across.

It's not that the central thread is unimportant. It used to be the case, certainly in the UK, that science, with its roots in philosophy and the pursuit of knowledge, was considered far loftier than engineering, growing out of mechanical work and the pursuit of profit. There is, perhaps, still a whiff of this around in some circles - so Browne's message that engineering has been…

Bloom - Ruth Kassinger ***

There is much fascinating material in this chunky book by Ruth Kassinger. It may be my total ignorance of biology and everyone else knows these things, but I learnt so much - for example that seaweed is algae and not a plant, about algae's role in the development of land plants, about the algae in lichen and its contribution to coral reefs.

The book is divided into four broad sections: on the origins and development of algae, on algae (and particularly seaweed) as food, on making use of algae, for example, for biofuel, and on algae and climate change, particularly the bleaching of coral and algal blooms. This is all done in a very approachable writing style, mixing descriptive material that is never over-technical with narrative often featuring visits to different locations and to talk to a range of experts from those who study to algae to those who cook them.

There are two problems though. Firstly, the book is too long at 380 pages. Each section could do with a trim, but this wa…