Skip to main content

An Introduction to the Physics of Sport – Vassilios McInnes Spathopoulos ***

This short title may have been self published, but it has been well edited and comes across as a professional piece of writing. The only issue I have with it is whether or not it manages to cross the divide from textbook to popular science.
The topic is an interesting one – looking a how physics comes into play (see what I did there – ‘into play’) in sport. Personally I have zero interest in sport itself – I would rather watch paint dry than be a spectator at a sporting event or watch it on TV – yet there still is some interesting stuff to be had here.
It is, as some sporting commentator once nearly said, a book of three halves. It opens very strongly, with some excellent material on the way people accelerate, comparing a runner with a car or a plane (people do better for a very short while). Similarly, as I had no idea about the Magnus force that enables a spinning ball to curve (although I had used it often enough in table tennis, and inevitably heard of it a la ‘Bend it like Beckham’), it was fascinating to find out more about this.
In the centre section of the book, which has a lot of detail about rotating objects and flying objects, frankly my attention wained. It was a bit snooze inducing. But then things picked up again a lot at the end with another truly fascinating section on how environmental conditions can influence performance. I had no idea, for example, that wind speed is very tightly restricted in running races, but in, say, discus where it has potentially much more effect, it isn’t taken into consideration. This was both of interest and strongly confirmed my view that all competitive sport is totally arbitrary and meaningless.
As far as the way the book is written, the spirit is willing but the flesh is weak. The author clearly intends to make the subject approachable, but can’t help but fall into classic academic writing mode, often flinging out a collection of facts rather than presenting us with a narrative that makes the topic approachable.
Although some of the equations are useful, there are too many – and where they are used we also have the other typical error of the academic of using clumsy notation because it is the convention. The very first example makes this plain. We are told that speed is given by the equation V=S/t which to the general reader is baffling. It would have been much better to have said s=d/t so the letters correspond properly to the words ‘speed’, ‘distance’ and ‘time’ (and were all in the same case). I know there are reasons why in the physics big picture the particular letters in the book are used, but as popular science readers we don’t give a damn about that. Make it readable, not conventional!
Overall then, if you are interested in the physics that lies behind sport, this  short book will give you plenty of information – and if the topic interests you it is definitely worth getting hold of a copy – but I’d see it working best as an introductory primer for someone going into sports science rather than a true popular science book.
Paperback:  
Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

De/Cipher - Mark Frary ****

I was a little doubtful when I first saw this book. Although it has the intriguing tagline 'The greatest codes ever invented and how to crack them' the combination of a small format hardback and gratuitous illustrations made me suspect it would be a lightweight, minimal content, Janet and John approach to codes and ciphers. Thankfully, in reality Mark Frary manages to pack a remarkable amount of content into De/Cipher's slim form.

Not only do we get some history on and instructions to use a whole range of ciphers, there are engaging little articles on historical codebreakers and useful guidance on techniques to break the simpler ciphers. The broadly historical structure takes the reader through basic alphabetic manipulation, keys, electronic cryptography, one time pads and so on, all the way up to modern public key encryption and a short section on quantum cryptography. 

We even get articles on some of the best known unsolved ciphers, such as the Dorabella and the Voynich ma…

Paul McAuley - Four Way Interview

Paul McAuley won the Philip K. Dick Award for his first novel and has gone on to win the Arthur C. Clarke, British Fantasy, Sidewise and John W. Campbell Awards. He gave up his position as a research biologist to write full-time. He lives in London. His latest novel is Austral.


Why science fiction?

For one thing, I fell in love with science fiction at an early age, and haven’t yet fallen out of love with it (although I have flirted with other genres). For another, we’re living in an increasingly science-fictional present. Every day brings headlines that could have been ripped from a science-fiction story. Giant robot battle: Who knew a duel between chainsaw-armed mech suits could be so boring? for instance. Or, Roy Orbison hologram to embark on UK tour in 2018. And looming above all this, like Hokusai’s famous wave, are the ongoing changes caused by global warming and climate change, which is just one consequence of human activity having become the dominant force of change on the planet…

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…