Skip to main content

Turing: Pioneer of the Information Age – B. Jack Copeland *****

Alan Turing is a name that has grown in stature over the years. When I first got interested in computers all you really heard about was the Turing test – the idea of testing if a computer could think by having a conversation by teletype and seeing if you could tell if there was a computer or a human at the other end. Then came the revelations of the amazing code breaking work at Bletchley Park. Now, though, we know that Turing was much more than this, the single person who most deserves to be called the father of the computer (we allow Babbage to be grandfather).
All this and much more comes through in B. Jack Copeland’s superb biography of Turing. It’s not surprising this book (and its competitors) is on sale now. 2012 is the hundredth anniversary of Turing’s birth. And it is a timely reminder of just how important Turing was to the development of the the technology that is at the heart of much of our everyday lives (including the iPad I’m typing this on today).
If I had to find fault at all with this book, it can be a little summary in some aspects of Turing’s private life – but I suspect this reflects the lack of information from a very private man. However if, like me, you’re a bit of a computer geek it would be impossible not to be fascinated by the description of his ideas and the technology that was developed from them, beautifully written by Copeland. I’ve read plenty before about Enigma, but the section on this was still interesting, and the Tunny material (a later, more sophisticated German coding device, to crack which the Colossus computer was developed) was all new to me.
Similarly, I hadn’t realised how many firsts belong in the UK rather than the US. I knew Turing’s work led to the first stored program electronic computer – the first true computer in a modern sense – but I hadn’t realised, for instance that Turing was the first to write the code for computer generated music, with the first computer music in the world produced using that code in Manchester (contrary to the myths you are likely to see online).
Although some of the personal life information is a little sketchy, Copeland really delivers on Turing’s death. I had always accepted the story that he committed suicide with a poisoned apple as a result of the ‘chemical castration’ he chose as an alternative to prison for admitting homosexual acts. Copeland tears this myth to pieces. Turing had endured the hormone treatment with amusement – and it had finished a year before his death. By then he was fully recovered. He appears to have been happy and positive at the time of his death. He left a part-eaten apple by his bed every night. And he was experimenting on electroplating in a room adjacent to his bedroom – using a solution that gave off hydrogen cyanide. The postmortem was very poor, without testing whether the cyanide that killed him had been ingested or inhaled. The evidence seems strong that Turing’s death was an unfortunate accident, not the tragic suicide that is usually portrayed.
In the end I can strongly recommend that anyone with an interest in computing should rush out and buy a copy of this book. Well written, fascinating and overthrowing a number of myths, it’s a must-have.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur