Skip to main content

A Little History of Science – William Bynum ***

Doing all of science in one book is not an easy task, nor is it obvious how to go about it. William Bynum has chosen to provide us with a breezy high speed canter through the history of science, with the keyword being ‘history’. There is a lot of about the people involved and the context, always good from a popular science viewpoint.
Bynum manages to do this in an approachable way – almost too approachable sometimes as the style veers between writing for adults and for children. The bumf says ‘this is a volume for young and old to treasure together,’ but it really is neither fish nor fowl. The approach generally speaking is one that works best for adults, but then you get a sentence like ‘Galen was very clever and was not afraid to say so,’ that sounds ever so Janet and John.
Perhaps my biggest problem with the book is that while the history side of it was usually fine, the science was not always so. Some of it was just little factual errors – stating that the human appendix has no function – actually it has recently been discovered to have one – or referring to ‘degrees Kelvin’ like ‘degrees Celsius’ where the unit on the Kelvin scale is just kelvins (no degrees). But the problems were more painful when it came to modern physics – it did rather look like the author really didn’t know what he was writing about.
He tells us, for instance, that cyclotrons and synchrotrons were used by Chadwick in ‘smashing high-speed neutrons into heavy atoms’ – but these devices can only accelerate charged particles, and Chadwick used slow neutrons from decaying radioactive substances. He also says that the twins paradox ‘is just a thought experiment and could only happen in science fiction’. Well, no, it’s not, and on a small scale with atomic clocks it has been performed many times. He also seems confused about gravity, commenting that in space ‘there is no gravity. Astronauts and their spacecraft are essentially in free fall.’ The last bit is true, but not because there is no gravity – there’s plenty of gravity at the kind of level that, say the ISS orbits. But that free fall means it isn’t felt.
The absolute worst example is a paragraph that I find almost entirely without meaning. I would be grateful if anyone could explain this one to me:
As Einstein’s E=mc2 tells us, at ever higher speeds – almost the speed of light – in the accelerators the mass is mostly converted into energy. The physicists found that these very fast particles do some fascinating things. The electron emerges unchanged from the accelerator. It is part of a family of force-particles – the leptons.
I am baffled. Overall, then I am not sure what the audience for this book is, nor am I happy that they will get any sensible understanding of modern physics.

Hardback 

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Artificial Intelligence - Yorick Wilks ****

Artificial intelligence is one of those topics where it's very easy to spin off into speculation, whether it's about machine conciousness or AI taking over the world (and don't get me onto the relatively rare connection to robots - cover designer please note). All the experience of AI to date has been that it has been made feasible far slower than originally predicted, and that it faces dramatic limitations. So, for example, self-driving cars may be okay in limited circumstances, but are nowhere near ready for the commute home. Similarly, despite all the moves forward in AI technology, computers are so-so at recognising objects after learning from thousands of examples - sometimes fooled by apparently trivial surface patterning - where humans can recognise items from a handful of examples.

Even so, we can't deny that AI is having an influence on our lives and Yorick Wilks, emeritus professor of AI at the University of Sheffield, is ideally placed to give us a picture …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …