Skip to main content

What Next for the Higgs Boson? – Jim Baggott

by the author of Higgs
On 4 July 2012, scientists at CERN announced the discovery of a new elementary particle that they judged to be consistent with the long-sought Higgs boson. The next step is therefore reasonably obvious. Physicists involved in the ATLAS and CMS detector collaborations at CERN’s Large Hadron Collider (LHC) facility will be keen to push ahead and fully characterize the new particle. They will want to know if this is indeed the Higgs boson, the one ingredient missing from the so-called standard model of particle physics.
How will they tell?
Physicists at Fermilab’s Tevatron collider and CERN’s LHC have been searching for the Higgs boson by looking for the tell-tale products of its different predicted decay pathways. The current standard model is used to predict both the rates of production of the Higgs boson in high-energy particle collisions and the rates of its various decay modes. After subtracting the ‘background’ that arises from all the other ways in which the same decay products can be produced, the physicists are left with an excess of events that can be ascribed to Higgs boson decays.
Now that we know the new particle has a mass of between 125-126 billion electron-volts (equivalent to the mass of about 134 protons), both the calculations and the experiments can be focused tightly on this specific mass value.
So far, excess events have been observed for three important decay pathways. These involve the decay of the Higgs boson to two photons (written H → γγ), decay to two Z bosons (H → ZZ → l+l-l+l-, where l signifies leptons, such as electrons and muons and their anti-particles) and decay two W particles (H → W+W- → l+ν l-ν, where ν signifies neutrinos). All these decay pathways involve the production of bosons. This should come as no real surprise, as the Higgs field was originally invented to break the symmetry between the weak and electromagnetic forces, thereby giving mass to the W and Z particles and leaving the photon massless. There is therefore an intimate connection between the Higgs, photons and W and Z particles.
The decay rates to these three pathways are broadly as predicted by the standard model. There is an observed enhancement in the rate of decay to two photons compared to predictions, but this may be the result of statistical fluctuations. Further data on this pathway will determine whether or not there’s a problem (or maybe a clue to some new physics) in this channel.
But the Higgs field is also involved in giving mass to fermions – matter particles, such as electrons and quarks. The Higgs boson is therefore also predicted to decay into fermions, specifically very large massive fermions such as bottom and anti-bottom quarks and tau and anti-tau leptons. Bottom quarks and tau leptons (heavy versions of the electron) are third-generation matter particles with masses respectively of about 4.2 billion electron volts (about four and a half proton masses) and 1.8 billion electron volts (about 1.9 proton masses).
But these decay pathways are a little more problematic. The backgrounds from other processes are more significant and so considerably more data are required to discriminate the background from genuine Higgs decay events. The decay to bottom and anti-bottom quarks was studied at the Tevatron before it was shut down earlier this year. But the collider had insufficient collision energy and luminosity (a measure of the number of collisions that the particle beams can produce) to enable independent discovery of the Higgs boson.
ATLAS physicist Jon Butterworth, who writes a blog for the British newspaper The Guardian, recently gave this assessment:
If and when we see the Higgs decaying in these two [fermion] channels at roughly the predicted rates, I will probably start calling this new boson the Higgs rather than a Higgs. It won’t prove it is exactly the Standard Model Higgs boson of course, and looking for subtle differences will be very interesting. But it will be close enough to justify [calling it] the definite article.
When will this happen? This is hard to judge, but perhaps we will have an answer by the end of this year.

Comments

Popular posts from this blog

The Dialogues - Clifford Johnson ***

The authors of science books are always trying to find new ways to get the message across to their audiences. In Dialogues, Clifford Johnson combines a very modern technique - the graphic novel or comic strip - with an approach that goes back to Ancient Greece - using a dialogue to add life to what might seem a dry message.

We have seen the comic strip approach trying to put across quite detailed science before in Mysteries of the Quantum Universe. As with that book, Dialogues manages to cover a fair amount of actual physics, but I still feel that the medium just wastes vast acres of page to say very little at all. This is brought home here because quite a lot of the sections of Dialogues start with several pages with no text on at all, just setting up the scenario.

As for using a discussion between two people to put a message across, Johnson makes the point that, for instance, Galileo's very readable masterpiece Two New Sciences is in the form of a dialogue (more accurately a discu…

Liam Drew - Four Way Interview

Liam Drew is a writer and former neurobiologist. he has a PhD in sensory biology from University College, London and spent 12 years researching schizophrenia, pain and the birth of new neurons in the adult mammalian brain. His writing has appeared in Nature, New Scientist, Slate and the Guardian. He lives in Kent with his wife and two daughters. His new book is I, Mammal.

Why science?

As hackneyed as it is to say, I think I owe my fascination with science to a great teacher – in my case, Ian West, my A-level biology teacher.  Before sixth form, I had a real passion for the elegance and logic of maths, from which a basic competence at science at school arose.  But I feel like I mainly enjoyed school science in the way a schoolkid enjoys being good at stuff, rather than it being a passion.

Ian was a revelation to me.  He was a stern and divisive character, but I loved the way he taught.  He began every lesson by providing us with a series of observations and fact, then, gradually, between …

A Galaxy of Her Own - Libby Jackson ****

This is an interesting book, even if it probably tries to be too many things to too many people. I wondered from the cover design whether it was a children's book, but the publisher's website (and the back of the book) resolutely refuse to categorise it as such. The back copy doesn't help by saying that it will 'inspire trailblazers and pioneers of all ages.' As I belong to the set 'all ages' I thought I'd give it a go.

Inside are featured the 'stories of fifty inspirational women who have been fundamental to the story of humans in space.' So, in some ways, A Galaxy of Her Own presents the other side of the coin to Angela Saini's excellent Inferior. But, inevitably, given the format, it can hardly provide the same level of discourse.

Despite that 'all ages' comment and the lack of children's book labelling we get a bit of a hint when we get to a bookplate page in the form of a Galaxy Pioneers security pass (with the rather worrying…