Skip to main content

Nature’s Nanotech #2 – The magic lotus leaf – Brian Clegg

The second in our Nature’s Nanotech series.
Living things are built on hidden nanotechnology components, but sometimes that technology achieves remarkable things in a very visible way. A great example is the ‘lotus leaf effect.’ This is named after the sacred lotus, the Nelumbo nucifera, an Asian plant that looks a little like a water lily. The plant’s leaves often emerge into the air covered in sticky mud, but when water runs over them they are self cleaning – the mud runs off, leaving a bare leaf exposed to the sunlight.
Water on a Lotus leaf – image from Wikipedia
Other plants have since been discovered to have a similar lotus leaf effect, including the nasturtium, the taro and the prickly pear cactus. Seen close up, the leaves of the sacred lotus are covered in a series of tiny protrusions, like a bad case of goose bumps. A combination of the shape of these projections and a covering of wax makes the surface hydrophobic. This literally means that it fears water, but more accurately, the leaf refuses to get too intimate with the liquid. This shouldn’t be confused with hydrophobia, a term for rabies!
Water is naturally pulled into droplets by the hydrogen bonding that links its molecules and ensures that this essential liquid for life exists on the Earth (without hydrogen bonding, water would boil at around -70 Celsius). This attraction is why raindrops are spherical. They aren’t teardrop shaped as they are often portrayed. Left to their own devices, water drops are spherical because the force of the hydrogen bonding pulls all the molecules in towards each other, but there is no equivalent outward force, so the water naturally forms a sphere.
The surface of the lotus leaf helps water stay in that spherical form, rather than spreading out and wetting the leaf. The result is that the water rolls off, carrying dirt with it, rather like an avalanche picking up rocks as it passes by. Because of the shape of the surface pimples on the leaf, known as papillae, particles of dirt do not stick to the surface well, but instead are more likely to stick to the rolling droplets and be carried away. As well as letting the light through to enable photosynthesis, this effect is beneficial to the leaves as it protects them against incursion by fungi and other predatory growths.
Although the papillae themselves can be as large as 20,000 nanometres tall, the effectiveness of these bumps is in their nanoscale structure, with multiple tiny nobbly bits that reduce the amount of contact area the water has with the surface to a tiny percentage. After the effect was discovered in the 1960s, it seemed inevitable that industry would make use of it and there have been several remarkable applications.
One example that is often used is self-cleaning glass – which seems very reasonable as the requirement is identical to the needs of the lotus leaf – yet strangely, what is used here is entirely different. Pilkington, the British company that invented the float glass process, has such a glass product known as Activ. This has a photo-catalytic material on its surface that helps daylight to break down dirt into small particles, but it also has a surface coating that works in the opposite way to the lotus leaf. It’s an anti-lotus leaf effect.
The coating on this glass, a nanoscale thin film, is hydrophilic rather than hydrophobic. Instead of encouraging water to form into droplets that roll over the glass picking up the dirt as they go, this technology encourages water to slide over the surface in a sheet, sluicing the dirt away. In practice this works best with heavy rainfall, where the lotus effect is better at cleaning surfaces with less of a downpour – but both involve nanoscale modification of the surface to change the way that water molecules interact.
Increasingly now, though, we are seeing true lotus leaf effect inspired products, that make objects hydrophobic. A process like P2i’s Aridion technology applies a nano-scale coating of a fluoro-polymer that keeps water in droplets. The most impressive aspect of this technology is just how flexible it is. Originally used to protect soldiers clothing against chemical attack , the coatings are now being applied to electronic equipment like smartphones, where internal and external components are coated to make them hydrophobic, as well as lifestyle products such as footwear, gloves and hats. Working like self-cleaning glass would be disastrous here. The whole point is to keep the water off the substance, not to get it wetter.
We are really only just starting to see the applications of the lotus leaf effect come to full fruition. For now it is something of a rarity. Arguably it will become as common for a product to have a protective coating as it for it to be coloured with a dye or paint. Particularly for those of us who live in wet climates like the UK, it is hard to see why you wouldn’t want anything you use outdoors to shrug water off easily. I know there have been plenty of times when I have been worriedly rubbing my phone dry on my shirt that I would have loved the lotus leaf effect to have come to my rescue.
Seeing nanotechnology at work in the natural world doesn’t have to help us come up with new products. It could just be a way of understanding better how a remarkable natural phenomenon takes place. In the next article in this series

 I will be looking at a mystery that was unlocked with a better understanding of nature’s nanotech – but one that also has significant commercial implications. How does a gecko cling on to apparently smooth walls?

Comments

Popular posts from this blog

Einstein's Greatest Mistake - David Bodanis ****

Books on Einstein and his work are not exactly thin on the ground. There's even been more than one book before with a title centring on Einstein's mistake or mistakes. So to make a new title worthwhile it has do something different - and David Bodanis certainly achieves this with Einstein's Greatest Mistake. If I'm honest, the book isn't the greatest on the science or the history - but what it does superbly is tell a story. The question we have to answer is why that justifies considering this to be a good book.
I would compare Einstein's Greatest Mistake with the movie Lincoln -  it is, in effect, a biopic in book form with all the glory and flaws that can bring. Compared with a good biography, a biopic will distort the truth and emphasise parts of the story that aren't significant because they make for a good screen scene. But I would much rather someone watched the movie than never found out anything about Lincoln - and similarly I'd much rather someon…

A Tale of Seven Scientists - Eric Scerri ***

Scientists sometimes tell us we're in a post-philosophy world. For example, Stephen Hawking and Leonard Mlodinow in The Grand Design bluntly say that that philosophy is 'dead' - no longer required, as science can do its job far better. However, other scientists recognise the benefits of philosophy, particularly when it is applied to their own discipline. One such is Eric Scerri, probably the world's greatest expert on the periodic table, who in this challenging book sets out to modify the philosophical models of scientific progress.

I ought to say straight away that A Tale of Seven Scientists sits somewhere on the cusp between popular science and a heavy duty academic title. For reasons that will become clear, I could only give it three stars if rating it as popular science, but it deserves more if we don't worry too much about it being widely accessible.

One minor problem with accessibility is that I've never read a book that took so long to get started. First t…

Four Way Interview - Tom Cabot

Tom Cabot is a London-based book editor and designer with a background in experimental psychology, natural science and graphic design. He founded the London-based packaging company, Ketchup, and has produced and illustrated many books for the British Film Institute, Penguin and the Royal Institute of British Architects. Tom has held a lifelong passion to explain science graphically and inclusively ... ever since being blown away by Ray and Charles Eames’ Powers of Ten at an early age. His first book is Eureka, an infographic guide to science.

Why infographics?
For me infographics provided a way to present heavy-lifting science in an alluring and playful, but ultimately illuminating, way. And I love visualising data and making it as attractive as the ideas are.  The novelty of the presentation hopefully gets the reader to look afresh. I love the idea of luring in readers who might normally be put off by drier, more monotone science – people who left science behind at 16. I wanted the boo…