Skip to main content

Nature’s Nanotech #2 – The magic lotus leaf – Brian Clegg

The second in our Nature’s Nanotech series.
Living things are built on hidden nanotechnology components, but sometimes that technology achieves remarkable things in a very visible way. A great example is the ‘lotus leaf effect.’ This is named after the sacred lotus, the Nelumbo nucifera, an Asian plant that looks a little like a water lily. The plant’s leaves often emerge into the air covered in sticky mud, but when water runs over them they are self cleaning – the mud runs off, leaving a bare leaf exposed to the sunlight.
Water on a Lotus leaf – image from Wikipedia
Other plants have since been discovered to have a similar lotus leaf effect, including the nasturtium, the taro and the prickly pear cactus. Seen close up, the leaves of the sacred lotus are covered in a series of tiny protrusions, like a bad case of goose bumps. A combination of the shape of these projections and a covering of wax makes the surface hydrophobic. This literally means that it fears water, but more accurately, the leaf refuses to get too intimate with the liquid. This shouldn’t be confused with hydrophobia, a term for rabies!
Water is naturally pulled into droplets by the hydrogen bonding that links its molecules and ensures that this essential liquid for life exists on the Earth (without hydrogen bonding, water would boil at around -70 Celsius). This attraction is why raindrops are spherical. They aren’t teardrop shaped as they are often portrayed. Left to their own devices, water drops are spherical because the force of the hydrogen bonding pulls all the molecules in towards each other, but there is no equivalent outward force, so the water naturally forms a sphere.
The surface of the lotus leaf helps water stay in that spherical form, rather than spreading out and wetting the leaf. The result is that the water rolls off, carrying dirt with it, rather like an avalanche picking up rocks as it passes by. Because of the shape of the surface pimples on the leaf, known as papillae, particles of dirt do not stick to the surface well, but instead are more likely to stick to the rolling droplets and be carried away. As well as letting the light through to enable photosynthesis, this effect is beneficial to the leaves as it protects them against incursion by fungi and other predatory growths.
Although the papillae themselves can be as large as 20,000 nanometres tall, the effectiveness of these bumps is in their nanoscale structure, with multiple tiny nobbly bits that reduce the amount of contact area the water has with the surface to a tiny percentage. After the effect was discovered in the 1960s, it seemed inevitable that industry would make use of it and there have been several remarkable applications.
One example that is often used is self-cleaning glass – which seems very reasonable as the requirement is identical to the needs of the lotus leaf – yet strangely, what is used here is entirely different. Pilkington, the British company that invented the float glass process, has such a glass product known as Activ. This has a photo-catalytic material on its surface that helps daylight to break down dirt into small particles, but it also has a surface coating that works in the opposite way to the lotus leaf. It’s an anti-lotus leaf effect.
The coating on this glass, a nanoscale thin film, is hydrophilic rather than hydrophobic. Instead of encouraging water to form into droplets that roll over the glass picking up the dirt as they go, this technology encourages water to slide over the surface in a sheet, sluicing the dirt away. In practice this works best with heavy rainfall, where the lotus effect is better at cleaning surfaces with less of a downpour – but both involve nanoscale modification of the surface to change the way that water molecules interact.
Increasingly now, though, we are seeing true lotus leaf effect inspired products, that make objects hydrophobic. A process like P2i’s Aridion technology applies a nano-scale coating of a fluoro-polymer that keeps water in droplets. The most impressive aspect of this technology is just how flexible it is. Originally used to protect soldiers clothing against chemical attack , the coatings are now being applied to electronic equipment like smartphones, where internal and external components are coated to make them hydrophobic, as well as lifestyle products such as footwear, gloves and hats. Working like self-cleaning glass would be disastrous here. The whole point is to keep the water off the substance, not to get it wetter.
We are really only just starting to see the applications of the lotus leaf effect come to full fruition. For now it is something of a rarity. Arguably it will become as common for a product to have a protective coating as it for it to be coloured with a dye or paint. Particularly for those of us who live in wet climates like the UK, it is hard to see why you wouldn’t want anything you use outdoors to shrug water off easily. I know there have been plenty of times when I have been worriedly rubbing my phone dry on my shirt that I would have loved the lotus leaf effect to have come to my rescue.
Seeing nanotechnology at work in the natural world doesn’t have to help us come up with new products. It could just be a way of understanding better how a remarkable natural phenomenon takes place. In the next article in this series

 I will be looking at a mystery that was unlocked with a better understanding of nature’s nanotech – but one that also has significant commercial implications. How does a gecko cling on to apparently smooth walls?

Comments

Popular posts from this blog

The Great Silence – Milan Cirkovic ****

The great 20th century physicist Enrico Fermi didn’t say a lot about extraterrestrial life, but his one utterance on the subject has gone down in legend. He said ‘Where is everybody?’ Given the enormous size and age of the universe, and the basic Copernican principle that there’s nothing special about planet Earth, space should be teeming with aliens. Yet we see no evidence of them. That, in a nutshell, is Fermi’s paradox.

Not everyone agrees that Fermi’s paradox is a paradox. To some people, it’s far from obvious that ‘space should be teeming with aliens’, while UFO believers would scoff at the suggestion that ‘we see no evidence of them’. Even people who accept that both statements are true – including  a lot of professional scientists – don’t always lose sleep over Fermi’s paradox. That’s something that makes Milan Cirkovic see red, because he takes it very seriously indeed. In his own words, ‘it is the most complex multidisciplinary problem in contemporary science’.

He points out th…

The Happy Brain - Dean Burnett ****

This book was sitting on my desk for some time, and every time I saw it, I read the title as 'The Happy Brian'. The pleasure this gave me was one aspect of the science of happiness that Dean Burnett does not cover in this engaging book.

Burnett's writing style is breezy and sometimes (particularly in footnotes) verging on the whimsical. His approach works best in the parts of the narrative where he is interviewing everyone from Charlotte Church to a stand-up comedian and various professors on aspects of happiness. We get to see the relevance of home and familiarity, other people, love (and sex), humour and more, always tying the observations back to the brain.

In a way, Burnett sets himself up to fail, pointing out fairly early on that everything is far too complex in the brain to really pin down the causes of something as diffuse as happiness. He starts off with the idea of cheekily trying to get time on an MRI scanner to study what his own brain does when he's happy, b…

Bodyology - Mosaic Science ****

It's a good sign when you pick up a book intending to read one chapter and end up reading three. It's very moreish. This is because it's made up of short, self-contained articles, originally published on a website. Often an edited collection of articles by different authors suggests a boring read, but here the articles are good pieces of journalism with plenty to interest the reader.

The topics are all vaguely human body related, but thankfully not all medical (not my favourite subject) - so, for example, as well as stories of a person cured of Lyme disease by bee stings or a piece on miscarriages we get topics like the effects on the body of being struck by lightning or falling from a high place. Even some more explicitly health-related matters, such as the impact of losing your sense of smell, were engaging enough to get me past my medical squeamishness.

The only reason I can't give the collection five stars is because of one aspect of the writing style that runs throu…