Skip to main content

The Sun is Dying and Global Dimming – Brian Cox

Two mini-features from the CERN physicist, media star and scientific advisor to the movie Sunshine.
The Sun is Dying
The Sun will not live forever. It has enough fuel left, if our current understanding is correct, for another 5 billion years, at which point it will die. But could it be possible for the Sun to die much sooner, within the next 100 years even? From a scientific perspective, it should be said that this is very unlikely. But, it is also true that there is a lot about the universe that we do not understand.
Over the last few years astronomers have observed that there is extra “stuff” in the universe that we can see only by its gravitational influence on stars and galaxies. This stuff goes by the name of Dark Matter, and there is five times as much Dark Matter in the universe as there is normal matter, the stuff that makes up you, me, and the stars and planets we can see with our telescopes. What is this mysterious stuff? It’s possible, some scientists would say likely even, that this stuff is made of particles known as supersymmetric particles, a new and exotic form of matter that is high on the list of potential discoveries at CERN’s giant Large Hadron Collider, a 27km in circumference machine which begins operations this year after almost a decade of construction.
Theoretical physicists have spent many years calculating the properties of these supersymmetric particles, and we have a reasonable theoretical understanding of how they might behave. One possibility is that they could clump together into giant balls known as Q-balls. If this is true, then these heavy and exotic objects could have been made billionths of a second after our Universe began, and still be roaming the Universe today. It is speculated that, if a Q-ball drifts into the heart of a super-dense object such as a neutron star, it could begin to eat away at it’s core like a cancer, until the star is no longer massive enough to maintain itself and explodes in a violent explosion. Such explosions, known as gamma ray bursts, are seen in the Universe, although their cause is as yet unknown.
Could such a dangerous, exotic object drift into the Sun’s core and cause it to stop shining? It is likely that the Sun is many times too diffuse to stop a Q-ball – it would power right through. But maybe, just maybe, some strange exotic form of matter from the earliest times in the universe could settle deep within the Sun’s core, and disrupt its function enough to cause the catastrophic scenario seen in Sunshine. It’s far-fetched, but we have a saying in physics that anything that isn’t explicitly ruled out is therefore possible, so in the final analysis, you never quite know.
Global Dimming
It is now suspected that pollution in the Earth’s atmosphere, caused by industrialization and natural phenomena such as volcanic eruptions, may have significantly reduced that amount of sunlight reaching the Earth’s surface. It is estimated that this could have led to a cooling effect of over 1 degree overt he last 40 years, which would go some way to offsetting the effect of global warming. Global warming is caused primarily by increasing carbon dioxide levels in the atmosphere that prevent heat being radiated back out into space from the Earth’s surface.
The phenomenon of global dimming may therefore have saved us, so far, from the worst affects of climate change, although it has been noticed that as pollution levels have been reduced, particularly in Western Europe, the affects of global dimming seem to be reducing, leading to an accelerating temperature rise once again. We may therefore be in the paradoxical situation that reducing pollution might INCREASE the effects of global warming, leading us ever more quickly towards catastrophe.
This discovery isn’t all bad, however, because it may suggest a short term solution to climate change. Why not intentionally put pollutants, which may be designed to be benign in other respects, into the atmosphere to accelerate global dimming, and therefore slow the climate change caused by carbon dioxide emissions. Several suggestions along these lines have been made, including adding small particles to airplane fuel, and therefore using one of the main contributors to climate change, aircraft, to slow its effects. It’s an intriguing possibility, and one that is the focus of significant research, although it should be said that we cannot at present predict the effects of such fine-tuning of the climate, so global dimming shouldn’t be seen as a means to allow us to continue to increase carbon dioxide emissions.
Brian Cox is science advisor to the movie Sunshine – see www.sunshinemovie.co.uk

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…