Skip to main content

The Science Delusion – Rupert Sheldrake ***

Half of what’s in this quite chunky tome is excellent – the trouble is that I suspect the other bits, which aren’t so good, will put off those that really should be reading it.
The fundamental message Rupert Sheldrake is trying to get across is that science typically operates in a very blinkered, limited way. And he’s right. He shows very convincingly the way that time and again scientists refuse to look at anything outside of a very limited set of possibilities, not because there is good evidence that these particular avenues should be ignored, but simply because of kneejerk reactions and belief systems.
Of course science can’t examine every silly idea, fruitcake theory and dead-end observation, but the closed-mindedness of many scientists is quite extraordinary, and certainly not scientific. And in bringing this out, Sheldrake has a lot to offer in this book. He examines a whole range of assumptions that are generally made in science and never questioned – and this is a brilliant thing. We’re talking basic things like universal constants staying constant, energy being conserved, whether consciousness is purely a product of the matter in the brain and so on. I’m not saying these are assumptions are necessarily wrong, but it’s too easy to get into the habit of thinking that they shouldn’t be questioned. We quickly forget that they are assumptions.
Sheldrake also shows powerfully how some professional skeptics simply have no interest in looking into claims for anything outside of our current scientific understanding (telepathy, for example). He cites a wonderful example where he was brought into a TV programme with Richard Dawkins. He did this on the assurance that this would would involve the discussion of the evidence for and against telepathy. ‘I suggested that we actually discuss the evidence,’ says Sheldrake. ‘[Dawkins] looked uneasy and said “I don’t want to discuss evidence.”… The director confirmed that he too was not interested in evidence.’ Debunking without evidence isn’t science, it is little more than name calling, and assuming it’s true, Richard Dawkins ought to be ashamed.
Another great example is pointing out how little science, outside of medicine (and parapsychology) makes use of blind experiments. It has been demonstrated time and again that if experimenters have an expected outcome, they will influence the results of the experiment. A good example was an experiment using rats in a maze. The experimenters were split into two, one set given highly intelligent rats, the other given slow rats. Not surprisingly, the intelligent rats completed the mazes very significantly faster. Only they were both the same type of rats. The only difference was the experimenters’ expectations. When physicists undertake an experiment (the hunt for a Higgs boson, say), they are not usually open minded, they are looking for a specific outcome. It’s rather scary to think just how much they may be biasing the experimental outcome (and what’s published – at least 90 percent of data isn’t) towards the results they expect.
So there’s good stuff in here that everyone working in science, or thinking about science, ought to consider. But then there’s the downside. We’ve all got friends who are obsessed with their hobbies. And whatever you are talking about, they will bring in their pet topic. So you might be discussing the banking crisis and your friend who is a bus enthusiast pipes up, ‘Yes, and it’s amazing what an effect it has had on bus timetables.’ Reading a Rupert Sheldrake book, you are always thinking, ‘Please don’t do it, Rupert. Don’t mention it, Rupert. Please!’ But inevitably along comes morphic resonance and morphic fields.
The thing is, Sheldrake is a legitimate scientist who came up with an idea that has been largely ignored or ridiculed. Morphic resonance (apart from sounding far too much like a weapon the Borg would use) is actually not a bad idea and deserves further investigation. But as soon as you bring your pet unsupported scientific theories into a book it degrades the rest of it. Morphic fields might illustrate well the kind of problem with assumptions and conventions that Sheldrake is trying to highlight, but because they are so speculative, they simply get in the way. He should have left them out.
Similarly there is quite a lot here that will put the backs up of many readers. Material that seems supportive of anything from homeopathy to the concept of chi (qi) in ancient Chinese medicine. The trouble here is that Sheldrake seems to be confusing two things. It is perfectly possible that there are phenomena like telepathy that exist (at least in perception) but aren’t well explained by current scientific theories. But this doesn’t mean that you should give any support to totally fictional theories that have no basis in observation and what we do know about science. We may well need new ideas, new mechanisms – but not hauling out hoary old ideas that are long past their sell-by date. He should have trimmed this guff out, which would not in any way have weakened the main thrust of the book.
Overall, then, a valuable and powerful message, but one that is almost certainly going to be lost to those who most need to hear of it because of the unfortunate trappings that have also been included.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. Too kind by far. Sheldrake is saying nothing new. As an ancient Greek might have said "Life is short, and art long, opportunity fleeting, experimentations perilous, and judgment difficult." Any decent scientist knows that better than Sheldrake. Dawkins was right to be dismissive.

    ReplyDelete

Post a Comment

Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Uncertainty - Kostas Kampourakis and Kevin McCain ***

This is intended as a follow-on to Stuart Firestein's two books, the excellent Ignorance and its sequel, Failure, which cut through some of the myths about the nature of science and how it's not so much about facts as about what we don't know and how we search for explanations. The authors of Uncertainty do pretty much what they set out to do in explaining the significance of uncertainty and why it can make it difficult to present scientific findings to the public, who expect black-and-white facts, not grey probabilities, which can seem to some like dithering.

However, I didn't get on awfully well with the book. A minor issue was the size - it was just too physically small to hold comfortably, which was irritating. More significantly, it felt like a magazine article that was inflated to make a book. There really was only one essential point made over and over again, with a handful of repeated examples. I want something more from a book - more context and depth - that …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …