Skip to main content

17 Equations that Changed the World [In Pursuit of the Unknown] – Ian Stewart ***

There’s been a trend for a couple of years in popular science to produce ‘n greatest ideas’ type books, the written equivalent of those interminable ’50 best musicals’ or ‘100 favourite comedy moments’ or whatever shows that certain TV companies churn out. Now it has come to popular maths in the form of Ian Stewart’s 17 Equations that Changed the World.
Stewart is a prolific writer – according to the accompanying bumf he has authored more than 80 books, which is quite an oeuvre. That can’t be bad. He is also a professional mathematician – a maths professor – and that potentially is a problem. The trouble is that, much more so than science, mathematicians are not ordinary people. They get excited about things that really don’t get other people thrilled. And it takes an exceptional mathematician to be able to communicate that enthusiasm without boring the pants off you. It’s notable that the most successful maths populariser ever, Martin Gardner, wasn’t a mathematician.
So how does Ian Stewart do here? Middling well, I’d say. The equations he provides us with are wonderful, fundamental ones that even someone with an interest in science alone, who only sees maths as a means to an end, can see are fascinating. In most cases he throws in quite a lot of back story, historical context to get us interested. So the meat of the book is excellent. But all too often there comes a point in trying to explain the actual equation where he either loses the reader because he is simplifying something to the extent that the explanation isn’t an explanation, or because it’s hard to get excited about it, unless you are a mathematician.
The section on the Schrodinger equation, for example, is presented in such a way that it’s almost impossible to understand what he’s on about, throwing around terms like the Hamiltonian and eigenfunctions without ever giving enough information to follow the description of what is happening. (I also always get really irritated with knot theory, as the first thing mathematicians do is say ‘Let’s join the ends up.’ No, that’s not a knot any more, it’s a twisted or tangled loop. A knot has to be in a piece of string (or rope, or whatever) with free ends.)
Inevitably, to give the book real world interest, many of the equations are from science, and Stewart proves, if anything, better at getting across the science than he is the maths (probably because it is easier to grasp the point). The only section I’d argue a little with is the one on entropy, where he repeatedly says that entropy always increases or stays the same, where it’s more accurate to say that statistically it is very, very likely to do so. But there is always a small chance that purely randomly, say a mixture of gas molecules will partly unmix. (He also uses an unnecessarily complex argument to put down the creationist argument that uses entropy to argue for divine intervention, as it’s easiest to explain that you aren’t dealing with a closed system, something he doesn’t cover.)
Overall, then, I am not sure who will benefit from this book. There’s not enough detail to interest people studying maths or physics at university, but it becomes too obscure in a number of places for the general reader. A good attempt, but would have benefited from having a co-author who isn’t a mathematician and who could say ‘Sorry, Ian, I don’t get that. Let’s do it differently.’ Bring back Simplicio. (One for the Galileo fans.)

Paperback 

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…

The Cosmic Mystery Tour – Nicholas Mee ****

This is another book, like last year’s Enjoy Our Universe by Alvaro de Rújula, that sets out to provide a light-hearted introduction to physics and astrophysics for the general reader. It’s from the same publisher (OUP) and packaged in the same way: as a high quality small-format hardback with 200 glossy pages, the majority of them adorned with colour pictures. But that’s where the resemblance ends. Unlike its predecessor, this new book by Nicholas Mee delivers exactly what it promises.

It’s not that de Rújula’s book was a bad one, but he just wasn’t able to think his way into the reader’s mind. He kept saying ‘physics is fun’, but he was talking about the fun a professional physicist gets out of doing it – which is a very arcane, often highly mathematical, type of fun. The result, for a non-specialist reader, was actually quite alienating. Mee, on the other hand, understands exactly how his readers think, what they find interesting, and the details that – no matter how important they …

Professor Maxwell's Duplicitous Demon - Brian Clegg ****

‘It’s not uncommon when trying to give Maxwell his rightful place in the pantheon of physics to bracket him with Newton and Einstein’, Brian Clegg says towards the end of this book. In one sense that’s perfectly true. Dip into any physics textbook and you’ll see Maxwell’s name at least as often as the other two. His greatest achievement – Maxwell’s equations – did for electromagnetism what Newton had done for gravity, while laying the essential theoretical groundwork for everything Einstein was to do.

There’s a big difference, though. A few years ago, when I was offered the chance to write short biographies of Newton and Einstein, I jumped at it – because they addressed mysteries of the universe that anyone can relate to, and their lives outside physics were, if anything, even more fascinating. At the risk of sounding downright rude, you can’t say either of those things about James Clerk Maxwell. In spite of that, Brian Clegg has done a wonderful job here of recounting just what Maxwel…