Skip to main content

How the Hippies Saved Physics – David Kaiser ***

I have to be honest here, the approach taken by the author is not one I was totally comfortable with. The author expresses regret that physics moved from requiring students to write philosophical essays about the interpretation of quantum theory to concentrating on the physics and maths. I have to say this doesn’t strike me as a problem. Similarly he is very enthusiastic, working very hard to find something good scientifically coming out of the counter culture. Again I don’t think this should be an end in itself. It’s interesting if true, but not something you should shape history to try to prove.
Much of the book is concerned with two things: quantum entanglement, and an obscure group of US scientists who called themselves the ‘Fundamental Fysics group.’ I’m sorry, but every time I saw that ‘Fysics’ it made me cringe and want to dunk someone’s head in a toilet and flush it. That kind of spelling is just about acceptable if you are selling doughnuts, but not if you want to be taken seriously.
Having written a book about quantum entanglement (The God Effect, which I’m delighted to see was in the author’s bibliography) I was interested to learn more about this group’s contribution. I think it’s fair to say, in the words of the great Paul Daniels it was ‘not a lot.’ But, to be fair, some of it was quite entertaining, if only in a kind of ‘weren’t those hippy types funny’ way. In fact by far the most interesting and absorbing part of the book (and it is a significant part) is the story of the lifestyles and strange goings on from nude discussion groups to murder.
The author also gives us quite a lot about entanglement, especially on the Bell inequality which was used to demonstrate that entangled particles really do seem to act non-locally, instantly communicating at a distance. Mostly this is fine, and provided significantly more details than many popular science accounts. This is important physics and deserves to be well covered. The only slight disappointment is a misunderstanding of the original EPR paper that started the whole quantum entanglement business.
This paper deals with two entangled particles, looking at their position and momentum. A lot of people misinterpreted it, thinking because it refers to these two properties that it’s about violating Heisenberg’s uncertainty principle, suggesting it’s possible to measure both accurately and simultaneously (something the uncertainty principle forbids). David Kaiser falls into this trap. But Einstein (the E of EPR) was dismissive of this idea. He said of the use of both position and momentum ‘Ist mir Wurst!’ (literally ‘it’s sausage to me’), meaning ‘I couldn’t care less.’ The intention was to show you could do this with position or momentum – there is no suggestion in the paper that you would attempt to do both simultaneously and undermine uncertainty.
In the end, Kaiser doesn’t make a great case for the Fysics (ugh) group contributing anything significant to our knowledge of physics – they’re always on the fringe. He certainly doesn’t justify the book’s title as anything other than very cheeky hyperbole. But it is a mildly entertaining oddity in the history of science – and as this can be a little dull sometimes, it’s not at all a bad thing that it has been covered.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur