Skip to main content

Quantum Enigma – Bruce Rosenblum & Fred Kuttner ***

Of all the wonders of physics, none is more fascinating and mind-bending than quantum theory. But there is one aspect of it that, frankly, I find tedious – and as this book is dedicated to that aspect, I wasn’t hugely looking forward to reading it. The aspect in question is interpretations of quantum theory. Such is my distaste for these speculations that my book on quantum entanglement, The God Effect, only makes passing reference to them.
Quantum theory itself describes how very small particles – both matter and less substantial, like photons of light – behave. It’s a weird world, but a consistent one. The trouble comes when you try to make the bridge between that world and the ‘normal’ world we experience. For example, unless they are observed, quantum particles don’t have a precise location. Instead there is a range of possibilities, each with it’s probability predicted precisely by an equation. But until you check where a particle is, it isn’t in a single place. This is fine and all works well. But the ‘enigma’ of the title is how it works. How a particle (say) goes from being a range of possibilities to an actual location.
We usually loosely ascribe this fixing of the state of a particle to a measurement or an observation – but does that imply it requires conscious attention? (Which is why this book also considers consciousness.) This led Einstein to wryly ask if the moon is still there if no one is looking at it. In practice it seems obvious consciousness is not involved. A detector like a Geiger counter is enough to fix a location. But those who have agonized about this for years think that a totally isolated Geiger counter that had no contact with anything else whatsoever would not make an observation, but would go into an entangled state with the particle.
So apart from the original Copenhagen interpretation, which simply describes the probability wave function collapsing on contact with a macro object and doesn’t fuss too much about the detail, there are now a whole range of interpretations from the many worlds idea to Bohm’s transformation of reality that works on the whole universe all at once.
The trouble I have with all this is that it isn’t really science. It’s more metaphysics than physics. The interpretations all predict the same thing – quantum physics happening the way it does – but don’t really add anything because they remain speculation. If at some point we get a clear indication of an interpretation that can have our support as being distinguished by data as the best one, I’d be happy to think about it, but for the moment I can’t help but feel it’s a waste of time. I’m quite happy to say that quantum physics works the way it does and I don’t really care how it is interpreted. Just enjoy the science!
As it happens, it wasn’t as bad an experience reading the book as I thought. Bruce Rosenblum and Fred Kuttner make the various interpretations and the way this whole business strays into the nature of consciousness quite approachable, and they get the message across without resorting to too much painful philosophy. I would say, though, that they tend to labour the point. There’s a long and rather boring section with a story about someone visiting a world where macro objects behave like quantum particles that is entirely unnecessary, especially as all the same examples are gone through again later using an actual quantum particle. I really can’t see the point of this.
There are also a few not-quite-right moments when the pair stray from science to history of science (they are scientists, not writers, which perhaps explains this). One example that jumped out at me was the comment about philosopher George Berkeley that Berkeley was a bishop, going on to say ‘It was common in those days for English academics to be ordained as Anglican priests, though the celibacy of Newton’s day was no longer required. Berkeley married.’ The big problem here is that Berkeley and Newton were contemporaries. Admittedly Berkeley was younger, but their working lives overlapped in a big way (in fact Berkeley’s most famous contribution to science was his attack on Newton’s ‘method of fluxions). The point they seem to have missed is that Berkeley wasn’t a priest because he was an academic. He was a bishop first, and a philosopher in his spare time. He wasn’t a professional academic at all.
Overall, an interesting contribution to books on quantum theory if you want to know more about interpretations, but because of the topic, not one I can get too excited about.
Review by Brian Clegg


Popular posts from this blog

The Feed (SF) - Nick Clark Windo ****

Ever since The War of the Worlds, the post-apocalyptic disaster novel has been a firm fixture in the Science Fiction universe. What's more, such books are often among the few SF titles that are shown any interest by the literati, probably because many future disaster novels feature very little science. With a few exceptions, though (I'm thinking, for instance, The Chrysalids) they can make for pretty miserable reading unless you enjoy a diet of page after page of literary agonising.

The Feed is a real mixture. Large chunks of it are exactly that - page after page of self-examining misery with an occasional bit of action thrown in. But, there are parts where the writing really comes alive and shows its quality. This happens when we get the references back to pre-disaster, when we discover the Feed, which takes The Circle's premise to a whole new level with a mega-connected society where all human interaction is through directly-wired connections… until the whole thing fails …

Everything You Know About Space Is Wrong - Matt Brown ****

What we have here is a feast of assertions some people make about space that are satisfyingly incorrect, with pithy, entertaining explanations of what the true picture is. Matt Brown admits in his introduction that a lot of these incorrect facts are nitpicking - more on that in a moment - but it doesn't stop them being delightful. I particularly enjoyed the ones about animals in space and about the Moon.

Along the way, we take in space exploration, the Earth's place in space, the Moon, the solar system, the universe and a collection of random oddities, such as the fact that Mozart didn't write Twinkle, Twinkle Little Star. Sometimes the wrongness comes from a frequent misunderstanding. So, for example, Brown corrects the idea that Copernicus was the first to say that the Earth moves around the Sun. Sometimes there's some very careful wording. This is used when Brown challenges the idea that the Russian dog Laika was the first animal in space. What we discover is that, i…

Dark Matter and the Dinosaurs - Lisa Randall ****

I did my PhD in galactic dynamics - which is an awkward subject when people want to know what its relevance to the 'real world' is. So I was excited when Clube and Napier's book The Cosmic Serpent came out, around the same time, because it provided me with a ready-made answer. It argued that the comets which occasionally crash into Earth with disastrous results - such as the extinction of the dinosaurs - are perturbed from their normal orbits by interactions with the large-scale structure of the galaxy.

I was reminded of this idea a few years ago when there was a flurry of media interest in Lisa Randall's "dark matter and the dinosaurs" conjecture. I was sufficiently enthusiastic about it to write an article on the subject for Fortean Times - though my enthusiasm didn't quite extend to purchasing her hardback book at the time. However, now that it's out in paperback I've remedied the situation - and I'm glad I did.

Dark matter is believed to exi…