Skip to main content

Seven Tales of the Pendulum – Gregory L. Baker ***

There was a time when practically every review we published of an OUP popular science book had the same complaint. What we were forced to say again and again was that this was a book with a great idea, an excellent topic, and an expert writing it. But unfortunately that expert was an academic who didn’t have a clue how to write for the general public and the result was unreadable. In the last year or so, however, things have changed. OUP has come out with a good number of titles (e.g. The Many Worlds of Hugh Everett III) which have been surprisingly readable. Unfortunately, this title is a return to form. It’s a wonderful subject. It has a neat concept in the ‘seven tales’. It’s written by an expert. But it is practically impenetrable.
Things don’t start awfully well in the introduction, when Gregory L. Baker is a little condescending about producing a version of his ‘real’ book for the common herd. But he also reassures us ‘Readers may rest easy knowing that I am mindful of the warning made famous by Stephen Hawking, that every formula reduces the readership by a factor of two.’ The problem is, although it sold well, Hawking’s book has a reputation for being difficult. Yet it is vastly easier to read than this one.
This limitation is frustrating, because Baker does pack in lots of interesting stuff about pendulums. Whether it’s the basic surprise that (despite Galileo), on the whole an ordinary pendulum’s timing isn’t independent of swing size, or explorations of Foucault’s pendulum, torsion pendulums, swinging censors in cathedrals and even the Pit and the Pendulum, there is some excellent material to cover. But the writing is rarely approachable and the author simply misses the whole idea of how to write for a general audience. This is much more the sort of writing you’d find in an undergraduate physics textbook.
I opened a page at random and had a choice of at least four quotes to demonstrate this. Here’s one of them: ‘A sophisticated mathematical procedure may be used to calculate the fractal dimension for the Poincaré section of the chaotic pendulum. But our intuition can at least help demystify the result. Close examination of the Poincaré section shows that its points do not cover an area, but are really a (possibly infinite) set of closely spaced lines. Therefore the Poincaré section is more than a line and less than an area. We then expect its dimension to like between one and two. For the parameter set A(Forcing)=1.5, Q (friction)=4, ωD(forcing frequency)=0.66 the fractal dimension is found to be 1.3. In fact, it is generally true that Poincaré sections for chaotic systems have noninteger dimensions.’ That’s all right then.
The other potential quotes were more dense and impenetrable. You might excuse this because some of the terms have been explained earlier, but the problem is that the approach assumes the way to write popular science is to take a textbook and take out the maths, leaving the explanatory parts, rather than starting from scratch and putting things in terms that people will understand.
Overall, then, a useful and interesting book for physics students who want to find out more about pendulums without doing the maths, but not for the general reader.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Peter Wothers - Four Way Interview

Dr Peter Wothers is a Teaching Fellow in the Department of Chemistry, University of Cambridge, and a Fellow and Director of Studies in Chemistry at St Catharine's College. He is heavily involved in promoting chemistry to young students and members of the public, and, in 2010, created the popular Cambridge Chemistry Challenge competition for students in the UK. Peter is known nationally and internationally for his demonstration lectures and presented the Royal Institution Christmas Lectures, titled The Modern Alchemist, in 2012. In 2014, he was awarded an M.B.E. for Services to Chemistry in the Queen's Birthday Honours.. His new book is Antimony, Gold and Jupiter's Wolf.

Why chemistry?

I’ve been pretty much obsessed with chemistry from about the age of 8.  I built up quite a substantial home laboratory with all sorts of things that are (quite rightly) banned now (such as white phosphorus) and also used to go to second-hand bookshops to find chemistry texts.  Eventually I boug…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …