Skip to main content

Why Does E=mc2? – Brian Cox & Jeff Forshaw ****

Brian Cox is a dream for any publisher (sorry, Jeff Forshaw, but we haven’t heard of you). The media’s darling physicist at the moment, Cox is sometimes described as the popstar physicist, partly because he looks like one, but even more remarkably, because he was one. Although now Professor of Particle Physics at Manchester University (though confusingly, according to the bumf, he lives in London – that’s quite a commute), he was once part of the band D:Ream. He’s also a nice guy – I’ve done couple of gigs with him (speaking engagements, not music), and though a little over-enthusiastic about the movie world at the time, he was very friendly.
You might expect, with Cox on board, that this would follow the approach of TV science – lots of ‘gee, wow, amazing!’ but light on nuts and bolts science. But not a bit of it. In fact, if Cox and Forshaw had taken the same advice about equations as Stephen Hawking, the chances are they would have expected to have around 2 readers.
This is primarily a book about the origins of the world’s most famous equation, but rather than just give fun background, some special relativity and some handwaving, this pair plunge in and really do explain how E=mc2 is derived, something that isn’t generally done in popular science because, frankly, it’s pretty hard going. They don’t stop there either. They go into the master equation of the standard model of particle physics, explaining how it is derived from gauge symmetry, exploring the different components of the equation and giving by far the best explanation of the Higgs field/Higgs boson that I have ever seen. In this, the book is absolutely masterful.
What I was a little disappointed with, having heard Cox’s eloquent speaking, is the rather stiff writing style. Although it tries to be friendly, I felt a bit like I was… well, being talked to by a couple of professors. There’s a lovely example of this where they quote Kurt Mendelssohn’s book on Lavoisier’s widow where she is said to have led Count Rumford “a hell of a life.” Cox and Forshaw then comment: ‘the book was written in 1966, hence the quaint turn of phrase.’) You can almost see the pursed professorial lips.
I loved this book, which perhaps makes it rather surprising that I only gave it four stars. If you’ve at least a physics A level and are about to set out on a physics degree (or, like me, you’ve got a rusty physics degree), it’s phrased at just the right level. But I felt it would be hard going for a general reader without that background. I had to re-read several bits to be sure what the writers intended, and in the end there’s a reason most popular science books don’t have this level of technical detail.
So, not quite the perfect popular science book, yet certainly one of 2009’s gems.

Paperback:  

Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …