Skip to main content

Nothing: a very short introduction – Frank Close ***

I came to this book for the title. Like “Zero”, “Symmetry”, or “Shapes”, “Nothing” is one of those concepts that seems to offer an intriguing cross-cutting view of science. A few pages into the book, I thought it would deliver on the promise of the title page. But after a couple of chapters I realised that this is a book about Something, not Nothing. A few chapters later it dawned on me that the Something was actually Basic Ideas in Modern Physics. Basic Ideas in Modern Physics is an interesting topic, but not nearly as novel and mind-bending as Nothing.
It’s not Frank Close’s fault that modern physics is preoccupied with nothing-related issues: what happened at the beginning of the universe, when something turned into nothing; how the very smallest particles (or waves) behave; the geometry of space and time. And if you would like to trot through the basics of fields, waves, special and general relativity, quantum theory, the Big Bang, and the structure of the atom, then this book is just what it says on the packet: a stimulating way into new subjects. But somehow I expected more from Nothing.
What is in the book for those who have already trotted through the basics with other science writers? Some old friends reappear – the falling muon to illustrate special relativity, the pencil-on-its-point to describe symmetry breaking. But Close also takes some new angles on the old topics. In general relativity, objects tend to take the shortest route between two points. Close compares this to the tradition of “shortest path” thinking in other fields, like optics. He notes how Einstein’s equations for special relativity are the same, mathematically, as those in Lorentz’s theory of the ether. And he has a good eye for historical details. It’s one thing to say how one might lay out a theory of special relativity. But how did Einstein himself do it, using what he knew at the time? Close has the question – if not the answer – at his fingertips.
But Close’s angles are sometimes too oblique. In explaining special relativity he starts out with the common-sense notion of simultaneity, and explains how it is defeated if we assume light is constant. He then jumps to the conclusion that objects must get longer, and clocks run slower, for observers of a moving object. It’s not clear how he made the jump. We see that Lorentz’s equations are the same as Einstein’s, but it’s not clear why they are the same. His chapter on the quantum vacuum is interesting, with some striking examples of experiments that cast light on the “infinite sea” of the vacuum. But the chapter has about three different arguments for different kinds of “infinite sea”, and it is not obvious how they link up.
Perhaps it was the small font or pocket-sized format, but I found it hard to get a proper grip on this book. It is a compact brainstorm. Close asks lots of questions, but it’s not clear when each one is answered. His no-fuss prose fits a lot in, but sometimes it’s too compressed. He throws out ideas – the anthropic principle, “emergence”, multiple worlds – that look promising but fall out of sight of the reader. By turns stimulating and frustrating, Nothing leaves you wanting to find out more about Basic Ideas in Modern Physics. Which is, after all, better than finding out about nothing.

Paperback:  
Using these links earns us commission at no cost to you  
Review by Michael Bycroft

Comments

Popular posts from this blog

Lucy Jane Santos - Four Way Interview

Lucy Jane Santos is an expert in the history of 20th century leisure, health and beauty, with a particular interest in (some might say obsession with) the cultural history of radioactivity. Writes & talks (a lot) about cocktails and radium. Her debut book Half Lives: The Unlikely History of Radium was published by Icon Books in July 2020.

Why science?

I have always been fascinated by the idea of science especially our daily interactions with and understandings of science – especially in a beauty context. I could spend hours pondering the labels of things on my bathroom shelf. What is 4-t-butylcyclohexanol (as a random example)? Do I really understand what I am putting on my face and spending my money on? Would it change my purchase habits if I did?  

Why this book?

This book came from an accidental discovery – that there was a product called Tho Radia which contained radium and thorium. I found out about it because I actually bought a pot of it – along with a big batch of other produc…

Rewilding: Paul Jepson and Cain Blythe ****

Those who are enthusiastic about saving the environment often have a mixed relationship with science. They might for example, support organic farming or oppose nuclear power, despite organics having no nutritional benefit and requiring far more land to be used to raise the same amount of crops, while nuclear is a green energy source that should be seen as an essential support to renewables. This same confusion can extend to the concept of rewilding, which is one reason that the subtitle of this book uses the word 'radical'.

As Paul Jepson and Cain Blythe make clear, though, radical change is what is required if we are to encourage ecological recovery. To begin with, we need to provide environments for nature that take in the big picture - thinking not just of individual nature reserves but, for example, of corridors that link areas allowing safe species migration. And we also need to move away from an arbitrary approach to restricting to 'native' species, as sometimes…

Is Einstein Still Right? - Clifford Will and Nicolas Yunes ***

If there's one thing that gets a touch tedious in science reporting it's the news headlines that some new observation or experiment 'proves Einstein right' - as if we're still not sure about relativity. At first glance that's what this book does too, but in reality Clifford Will and Nicolas Yunes are celebrating the effectiveness of the general theory of relativity, while being conscious that there may still be situations where, for whatever reason, the general theory is not sufficient.

It's a genuinely interesting book - what Will and Yunes do is take experiments that are probably familiar to the regular popular science reader already and expand on the simplified view of them we are usually given. So, for example, one of the first things they mention is the tower experiments to show the effect of gravitational red shift. I was aware of these experiments, but what we get here goes beyond the basics of the conceptual experiment to deal with the realities of d…