Skip to main content

Branches – Philip Ball ****

‘They are formed from chaos, from the random swirling of water vapour that condenses molecule by molecule, with no template to guide them. Whence this branchingness? Wherefore this sixness?’
This is Philip Ball, in his grand and mildly pompous style, describing how a snowflake forms. Branches (like this review) starts with concrete details rather than a general introduction. And the book (but not this review) starts as it means to go on: it has lots of examples and plenty of themes, but no thesis. But don’t let it put you off this rich, thoroughly-researched exploration of trees, rivers, bacteria, cracks, cities, and other kinds of branching growth.
The reason Branches lacks an introduction is probably that it is one third of a trilogy that Ball published as one volume back in 1999, and Branches has not quite disentangled itself from the other two books (see also Shapes and Flow). Ball often ‘reminds’ the reader of what they ‘learned’ in Book I or Book II. And the conclusion of Branches looks like it has been lifted straight from the 1999 volume, since it describes many ideas that do not appear in Branches. The promotional material on the back cover is also confused about the book’s identity. According to the blurb, Branches depicts nature as an ‘ever-changing, kaleidoscopic array of forms'; on the other hand, it is about the ‘deep elegance, simplicity, and unity of nature.’
So what is it, kaleidoscopic or simple and unified? The point is that it (nature) is both. And so is this book. On the one hand it deals with an impressive range of phenomena, from the natural (leaves, rocks, lightening) to the human (social networks, urban development); from the wondrous (snowflakes, lightening) to the mundane (opening an envelope, rain on a window, cracks on a mug); from the big (cities and rivers) to the small (bacteria and electric charges) and many things in between (trees, lungs, minerals in rocks). It does not deal with the very big (galaxies, black holes) or the very small (quarks, curled-up dimensions), but this is part of its charm: it finds pattern and excitement where we would not expect it, in the everyday world of middle-sized objects.
On the other hand Branches shows that each of these phenomena have something in common. As the book’s many illustrations tell us, they all look a bit like the branches of a tree, with a medium splitting repeatedly into two. And they also show (in Ball’s words) ‘a delicate balance of chance and determinism': rain falling randomly on a randomly rough surface gives rise to patterned river networks; weaknesses spread randomly through a piece of glass give rise to a predictable crack pattern. Many of them are also examples of fractals: each branch splits into two branches, which split again, and so on down the magnitudes. The shapes of many of the phenomena in the book can also be explained by a ‘minimization principle': a branching river network minimises the rate at which the water loses energy; the branch network on a tree minimises (according to some scientists) the length of each branch.
But these general ideas can only go so far. Ball is wary of becoming a fractal bore, someone who goes round collecting examples of fractals and putting them on display. The interesting phenomena are those that share a particular degree or kind of fractalling, and the remarkable thing is that the same degree or kind appears in completely different contexts: two different cities that show a different ‘fractal dimension’ are less alike than a city and a bacterial colony that have the same fractal dimension. As with fractals, so with the other general ideas in the book. The maximisation principle in animal veinous systems is different from that in the branches of a tree; chance and determinism have different roles in the formation of a glass fracture than in the formation of the Giant’s Causeway in Ireland. Branches is kaleidoscopic not just in its variety but also its intricate patterning.
Another unstated theme of the book is models. The main technical problem for the scientists in Branches is not detection and measurement but abstraction and simulation. A tree or crack scientist, unlike a quark or star scientist, does not have much problem getting in touch with their phenomena: trees and cracks are right here, and easily observed. The problem is that trees and cracks are devilishly complicated and disorderly phenomena, and the scientist wants to find two or three basic principles that explain how all the different kinds of trees and cracks form. Ball describes how scientists look for these principles using concrete models that slow down or scale down phenomena, like an artificial snow-flake that crystallises on a thread of rabbit hair, miniature mountains formed in the lab, and slow-motion cracks made by gradually lowering a plate of hot glass into hot water. But most of the models exist on computer programs or in equations, and these models are the real heroes of the book.
By giving us the essence of each model without writing down any programs or equations, Ball shows his own talent for abstraction. At one point (to take an example at random) he describes how models borrowed from physics can mimic the growth of cities. First he describes the model input, the basic picture a team of modellers used for a growing city: new developments appearing around a central hub, favouring areas have empty space nearby. Ball then gives the model outputs – pictures of cities generated by the model – and compares these outputs to present-day Cardiff. He describes how a new modelling team adds complexity to the model inputs, to account for the fact that new developments feed off existing, successful developments. The new model generates new outputs, which Ball again compares to a real-life example, Berlin this time. In this way Ball describes how a particular model works, and how model-based science works, without describing a single program or equation.
Ball’s prose is lively but sober, constrained by the gritty details of the science he writes about. But the phenomena are often vivid, and Ball has a sense of their poetry. Here he is describing how a sawtooth-shaped tear develops in a soft material like paper when a hard object is run through it:
‘So each crest of the cycloid, where the rip changes direction, corresponds to the switch from bending to stretching the strip. The crack swings constantly from side to side, at the same time surging ahead and then slowing down like the juddering stick-and-slip of a heavy object being pushed across a floor.’
Branches is at the serious end of popular science writing. You don’t need a physics degree to enjoy it, but you do need concentration. Ball (a physics PhD) has a practitioner’s interest in the details of science, and each chapter introduces a new crowd of scientists, models, and physical phenomena. Readers may find themselves flipping back to earlier chapters to understand ideas in the current chapter. They also may find themselves reading some chapters twice to retrace Ball’s zigzagging exploration of an idea, and the lack of clearly stated themes (or a working introduction or conclusion) makes it easy to get lost in the details. But if you are interested in science, nature, and how the former can explain the latter, this book is a superb study.

Hardback:  
Using these links earns us commission at no cost to you  
Review by Michael Bycroft

Comments

Popular posts from this blog

The World According to Physics - Jim Al-Khalili *****

There is a temptation on seeing this book to think it's another one of those physics titles that is thin on content, so they put it in an odd format small hardback and hope to win over those who don't usually buy science books. But that couldn't be further from the truth. In Jim Al-Khalili's The World According to Physics, we've got the best beginners' overview of what physics is all about that I've ever had the pleasure to read.

The language is straightforward and approachable. Rather than take the more common historical approach that builds up physics the way it was discovered, Al-Khalili starts with the 'three pillars' of physics: relativity, quantum theory and thermodynamics. In simple language with never an equation nor even a diagram in sight, the book lays out what physics is all about, what it has achieved and what it still needs to do.

That bit about no diagrams is an important indicator of how approachable the text is. Personally, I'm no…

Until the End of Time: Brian Greene ***

Things start well with this latest title from Brian Greene: after a bit of introductory woffle we get into an interesting introduction to entropy. As always with Greene's writing, this is readable, chatty and full of little side facts and stories. Unfortunately, for me, the book then suffers something of an increase in entropy itself as on the whole it then veers more into philosophy and the soft sciences than Greene's usual physics and cosmology.

So, we get chapters on consciousness, language, belief and religion, instinct and creativity, duration and impermanence, the ends of time and, most cringe-making as a title, 'the nobility of being'. Unlike the dazzling scientific presentation I expect, this mostly comes across as fairly shallow amateur philosophising.

Of course it's perfectly possible to write good science books on, say, consciousness or language - but though Greene touches on the science, there far too much that's more hand-waving. And good though he i…

Jim Al-Khalili - Four Way Interview

Jim Al-Khalili hosts The Life Scientific on BBC Radio 4 and has presented numerous BBC television documentaries. He is Professor of Theoretical Physics and Chair in the Public Engagement in Science at the University of Surrey, a New York Times bestselling author, and a fellow of the Royal Society. He is the author of numerous books, including Quantum: A Guide for the Perplexed; The House of Wisdom: How Arabic Science Saved Ancient Knowledge and Gave Us the Renaissance; and Life on the Edge: The Coming of Age of Quantum Biology. The paperback of his novel Sunfall is published in March 2020 by Transworld. His latest book is The World According to Physics.


Why physics?

I fell in love with physics when I was 13 or 14, when I realised not only that I was pretty good at it at school – basically common sense and puzzle solving – but because it was the subject that answered the big questions I had started contemplating, like whether the stars in the night sky went on for ever, what they were ma…