Skip to main content

13 Things that Don’t Make Sense – Michael Brooks *****

There are two ways to cope with things science can’t get a handle on. One is Shakespeare’s. (There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.) The slightly snide dig at science. The other is to accept this is what makes science interesting, and to come at these anomalies (as Michael Brooks refers to them) with a scientific mind. Thankfully, this excellent book, subtitled The Most Intriguing Scientific Mysteries of our Time, takes the second approach.
Brooks is breezy and fun – always readable and never dull. In thirteen chapters we discover some remarkable oddities of science. Some are reasonably well-known like dark matter and dark energy. Others less so (at least to me), like the Pioneer anomaly, where the two old Pioneer spacecraft are taking a course out of the solar system that isn’t properly explained by our current understanding of gravity – and particularly in the case of the Mimivirus, a giant virus that has many of the mechanisms of a living organism, and which Brooks uses beautifully to uncover the relatively unknown area of the remarkable nature of viruses. We also get life, death, sex, extraterrestrials and cold fusion – all explored in ways that might surprise.
In the case of cold fusion, for example, Brooks usefully shows how the science community’s concern not to appear flaky has resulted in some positive results being suppressed. This is no conspiracy, just the science herd instinct coming to the fore. He makes it clear that there are significant doubts about the original results – but equally there is evidence that there is something happening in some of the cold fusion experiments.
An obvious comparison is Michael Hanlon’s earlier 10 Questions Science Can’t Answer(you don’t have to be called Michael to write these books, but it helps). Although there is a small overlap on dark matter/energy they take quite a different approach and would be better seen as companions than rivals.
If I have any problems with the book, the tone can be just a bit too breezy sometimes, and he seems slightly less effective on medical topics. On the placebo effect Brooks seems a little confused over whether it works or not – and with his chapter on homeopathy seems a little out of date after Singh and Ernst’s Trick or Treatment. In fact, it was a shame he ended with the homeopathy chapter, as it’s the weakest. It was fine, for instance to point out structures in water – but there was nothing about how long these last (or how well they stand up to percussion). There was also a spot of skimpy fact checking. We’re told astronomer Edwin Hubble was English. (Anglophile, yes, English? No, no, no.) And that water is the only liquid that expands on freezing. Sorry, silicon and acetic acid do, and I suspect there are others.
These are small problems, though. Apart from the last one, each chapter is a little vessel of delights. I can see the appeal of the ‘how to carbonize your ferret’ style of little factoid books, but one like this that can develop each topic is so much better. Deserves to be up there as one of the best popular science books of 2008/9. Recommended.

Paperback:  
Using these links earns us commission at no cost to you   
Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur