Skip to main content

The Equation that Couldn’t be Solved – Mario Livio *****

A book we recently reviewed (Unknown Quantity by John Derbyshire) claimed to provide an engaging history of algebra, but failed to deliver. This book, by contrast, does much more than it claims. Not only does provide a genuinely readable history of algebra, but this is just a precursor to the development of group theory, its link to symmetry, and the importance of symmetry in the natural world. (If you are wondering what this has to do with an equation that couldn’t be solved, along the way it describes how it was eventually proved that you can’t produce a simple formula to predict the solutions to quintic equations – if that sounds painful, don’t worry, it isn’t in this book.)
I can’t remember when I last read a mathematics book that was so much of a page turner. Mario Livio has just the right touch in bringing in the lives and personalities of the mathematicians involved, and though he isn’t condescending in his approach, and occasionally readers may find what’s thrown at them a little hard to get their mind around, provided you are prepared to go with the flow and not worry too much if you understand every nuance, it is superb. Just an example of the throw-away brilliance – I’ve read a good number of books on string theory, but this is the first time I’ve seen it made clear how the mathematical basis of the theory is put together. Just occasionally it’s possible that Livio is skimming over a point in a little too summary a fashion – but that’s rare.
If you have read any other maths histories, you may already have come across some biographical detail of Abel and Galois, two very significant men in this story, who have the added biographical mystique of dying young. However, I really felt that Livio has added something to what has been said before, especially in his exploration of Galois’ mysterious death, and also in the way he sets the scene in France at the time, entirely necessary for those of us who haven’t studied history.
The one disappointment with the book is its final chapter, in which Livio tries to examine what creativity is and why some people are creative mathematicians. It sits uncomfortably, not fitting with the flow of the rest of the contents, and it’s clearly a subject the author knows less about than maths and physics. He makes a classic error (which may be one that mathematicians are particularly prone to) of assuming there is a single right answer to a real world problem. Livio challenges us with this problem: “You are given six matches of equal length, and the objective is to use them to form exactly four triangles, in which all the sides of all the four triangles are equal.” He then shows us “the solution” in an appendix. The fact is that almost all real world problems, outside the pristine unreality of maths, have more than one solution. In this case, his solution (to form a 3D tetrahedron) is not the only solution, and arguably is not even the best solution.*
However, despite the aberration of this chapter, the rest of the book is a tonic – absolutely one of the best popular maths books we’ve ever seen. Highly recommended.
* Here’s one other solution. For four equilateral triangles, you need 12 identical length sides. So cut each matchstick in half. You now have 12 identical length pieces and can make the four triangles. This is arguably a better solution because it is freestanding – Livio’s solution has to be held in place – and because it is more mathematically pleasing. If you take one triangle away from this solution (4-1=3) you end up with 3 triangles. if you take one triangle away from Livio’s solution, you end up with 0 triangles. (4-1=0). We can think of at least one other solution, and there are almost certainly more.

Paperback 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Tim Woollings - Four Way Interview

Tim Woollings is an Associate Professor in Physical Climate Science at the University of Oxford, leading a team of researchers in the Atmospheric Dynamics group. He obtained his PhD in Meteorology in 2005 and since then has worked on a variety of topics spanning weather prediction, atmospheric dynamics and circulation, and the effects of climate change. He has studied how the jet stream varies over weeks, years, and decades, and how we can better predict these changes. He was a contributing author on three chapters of the IPCC Fifth Assessment Report. Tim worked at the University of Reading as a postdoc, research fellow and then lecturer before moving to the University of Oxford in 2013. He is now the Oxford Joint Chair of the Met Office Academic Partnership. His new book is Jet Stream.

Why climate?

It has never been more important to learn about how our climate system works, and how we are affecting it. You certainly get a lot of satisfaction when your work touches on hugely important …

The Apollo Chronicles - Brandon Brown *****

There were two reasons I wasn't expecting much from this book. Firstly, there have been so many titles on the Apollo programme and the space race. And secondly, a book that focusses on the engineering involved would surely be far too much at the nut and bolt level (literally), missing out on the overarching drama that makes the story live. Also there were so many people involved - 400,000 is mentioned - that we couldn't have much human interest because we would be bombarded with lists of names.

Instead, I was charmed by Brandon Brown's account. His father was one of the engineers, but he isn't given undue prominence - Brown picks out a handful of characters and follows them through, bringing in others as necessary, but never overwhelming us with names. And while it's true that there is a lot of nitty gritty engineering detail, it rarely becomes dull. Somehow, Brown pulls off the feat of making the day-to-day, hectic engineering work engaging.

I think in part this …

Saturn – William Sheehan ****

This book marks something of a milestone in my reviewing career: it’s the first time I’ve seen an excerpt from one of my reviews printed on the back cover. It comes from my review of Sheehan’s previous book, on Mercury, which I said ‘easily convinced me the Solar System’s 'least interesting' planet is still a pretty fascinating place.’ That wasn’t an easy task for the author, given Mercury’s unspectacular appearance and reputation – but Saturn is a different matter. With its iconic rings, easily visible through a small telescope, it’s the favourite planet of many amateur astronomers. For space scientists, too, it’s a prime target – given that two of its moons, Titan and Enceladus, look like the kind of places we might find alien life. So Sheehan’s challenge this time wasn’t to find enough material to fill 200 pages, but to distil a potentially huge subject down to that size.

He meets this challenge just as successfully as the previous one – but not quite in the way I was expect…