Skip to main content

Is There Life After Death? – Tony Peake ***

Don’t ignore this book because you think it’s not about science – it is, and that’s why it’s here. Tony Peake is not in the business of peddling religion, but examines the possible impact of the strangest aspects of quantum theory and modern concepts of consciousness to see if there’s a scientific way of looking beyond our normal idea of a 70 year lifespan. In a sense the title of his book is misleading (I don’t think he chose it) – it’s not so much about life after death, as life outside of the conscious existence we all familiar with.
What is really interesting about this book is the way that Peake uses legitimate (if not always mainstream) scientific theories to weave a beguiling picture of what we might be, as beings that live in a very different universe to the one we perceive (we know our perception of the world is a construct of the brain). Inevitably it brings in the many worlds interpretation of quantum theory, but also many other ideas to make a powerful and exotic suggestion of how Peake believes we can exist outside of our apparent earthly life. It’s unfortunate that he brings in “data” from pseudo-science from Nostradamus’s predictions to hypnotism, but that doesn’t stop there being a lot of very interesting ideas here. To make his case, Peake has to combine scientific theory with subjective stories, which means ignoring that excellent quote “data is not the plural of anecdote” – but that doesn’t stop this being a genuinely interesting excursion into “what if?”
The biggest concern I have about this book is not the topic itself, which is fascinating, or even the anecdotal evidence, but rather the way that the whole edifice is built on shaky foundations. There are a number of errors in the basic science at the start of the book that make it worrying just how safe the rest of the conclusions are. For instance, early on we are told that Einstein called the particles of light he dreamed up photons. Unfortunately it was Planck, not Einstein, who came up with the idea of quanta, and Einstein didn’t call them photons – the name was devised by chemist Gilbert Lewis. We are also told that according to quantum theory, matter is nothing more than a probability wave – this is a rather odd interpretation. The probability wave describes the chances of a particle being in a particular position, but this doesn’t mean the particle is a probability wave. There is also some doubtful inclusion of woffly philosophy among the science. For example, Peake asks us where the redness of a red coat resides, given it doesn’t look red in moonlight, so the red nature can’t reside in the coat. This is a doubtful interpretation. The redness is a property of the chemical constituents that decide which frequencies that it will emit and which it will absorb. The fact that it doesn’t look red in some lights or absence of light is irrelevant – redness is a property of the chemical components that is revealed by using certain lights and that’s an end to it unless you want to play philosophical games.
Perhaps most worryingly, the whole basis of Peake’s argument is that according to quantum theory there needs to be a conscious observer to make the waveform collapse and the world to be become real. While some have argued this, it certainly isn’t a view held by most physicists, whichever interpretation of quantum theory they subscribe to – most would assume that an “observation” can be as little as an interaction with another particle. Just to be clear that I’m not being picky, here’s an example of fundamental scientific errors on just one page. We are told “most gamma ray primary particles are photons” – gamma rays are electromagnetic radiation: they are entirely made up of photons. A little later we are told “these primary particle photons carry so much energy they can travel at 99.9999999 percent of the speed of light.” No, photons are light – they travel at 100% of the speed of light. A little later there’s talk of time dilation and photons. “A clock moving alongside this particle would tick at one hundred billionth of the rate of a clock on Earth.” Unfortunately, the whole basis of special relativity is that nothing can move alongside a photon. However slow or fast you move alongside a light beam, it always comes at you at the same speed. A little later: “usually charged objects such as photons will be deflected by our galaxy’s magnetic field.” Unfortunately, photons aren’t charged particles.
Overall, then, this is a fascinating book and a great subject, well worth reading if only to see if you are inclined to argue with the author or agree with him. There is some doubt about the fundamental physics – perhaps there are one or two leaps of imagination too far – yet it doesn’t stop in being a book that should be on many more people’s shelves.

Paperback 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Uncertainty - Kostas Kampourakis and Kevin McCain ***

This is intended as a follow-on to Stuart Firestein's two books, the excellent Ignorance and its sequel, Failure, which cut through some of the myths about the nature of science and how it's not so much about facts as about what we don't know and how we search for explanations. The authors of Uncertainty do pretty much what they set out to do in explaining the significance of uncertainty and why it can make it difficult to present scientific findings to the public, who expect black-and-white facts, not grey probabilities, which can seem to some like dithering.

However, I didn't get on awfully well with the book. A minor issue was the size - it was just too physically small to hold comfortably, which was irritating. More significantly, it felt like a magazine article that was inflated to make a book. There really was only one essential point made over and over again, with a handful of repeated examples. I want something more from a book - more context and depth - that …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …