Skip to main content

Is There Life After Death? – Tony Peake ***

Don’t ignore this book because you think it’s not about science – it is, and that’s why it’s here. Tony Peake is not in the business of peddling religion, but examines the possible impact of the strangest aspects of quantum theory and modern concepts of consciousness to see if there’s a scientific way of looking beyond our normal idea of a 70 year lifespan. In a sense the title of his book is misleading (I don’t think he chose it) – it’s not so much about life after death, as life outside of the conscious existence we all familiar with.
What is really interesting about this book is the way that Peake uses legitimate (if not always mainstream) scientific theories to weave a beguiling picture of what we might be, as beings that live in a very different universe to the one we perceive (we know our perception of the world is a construct of the brain). Inevitably it brings in the many worlds interpretation of quantum theory, but also many other ideas to make a powerful and exotic suggestion of how Peake believes we can exist outside of our apparent earthly life. It’s unfortunate that he brings in “data” from pseudo-science from Nostradamus’s predictions to hypnotism, but that doesn’t stop there being a lot of very interesting ideas here. To make his case, Peake has to combine scientific theory with subjective stories, which means ignoring that excellent quote “data is not the plural of anecdote” – but that doesn’t stop this being a genuinely interesting excursion into “what if?”
The biggest concern I have about this book is not the topic itself, which is fascinating, or even the anecdotal evidence, but rather the way that the whole edifice is built on shaky foundations. There are a number of errors in the basic science at the start of the book that make it worrying just how safe the rest of the conclusions are. For instance, early on we are told that Einstein called the particles of light he dreamed up photons. Unfortunately it was Planck, not Einstein, who came up with the idea of quanta, and Einstein didn’t call them photons – the name was devised by chemist Gilbert Lewis. We are also told that according to quantum theory, matter is nothing more than a probability wave – this is a rather odd interpretation. The probability wave describes the chances of a particle being in a particular position, but this doesn’t mean the particle is a probability wave. There is also some doubtful inclusion of woffly philosophy among the science. For example, Peake asks us where the redness of a red coat resides, given it doesn’t look red in moonlight, so the red nature can’t reside in the coat. This is a doubtful interpretation. The redness is a property of the chemical constituents that decide which frequencies that it will emit and which it will absorb. The fact that it doesn’t look red in some lights or absence of light is irrelevant – redness is a property of the chemical components that is revealed by using certain lights and that’s an end to it unless you want to play philosophical games.
Perhaps most worryingly, the whole basis of Peake’s argument is that according to quantum theory there needs to be a conscious observer to make the waveform collapse and the world to be become real. While some have argued this, it certainly isn’t a view held by most physicists, whichever interpretation of quantum theory they subscribe to – most would assume that an “observation” can be as little as an interaction with another particle. Just to be clear that I’m not being picky, here’s an example of fundamental scientific errors on just one page. We are told “most gamma ray primary particles are photons” – gamma rays are electromagnetic radiation: they are entirely made up of photons. A little later we are told “these primary particle photons carry so much energy they can travel at 99.9999999 percent of the speed of light.” No, photons are light – they travel at 100% of the speed of light. A little later there’s talk of time dilation and photons. “A clock moving alongside this particle would tick at one hundred billionth of the rate of a clock on Earth.” Unfortunately, the whole basis of special relativity is that nothing can move alongside a photon. However slow or fast you move alongside a light beam, it always comes at you at the same speed. A little later: “usually charged objects such as photons will be deflected by our galaxy’s magnetic field.” Unfortunately, photons aren’t charged particles.
Overall, then, this is a fascinating book and a great subject, well worth reading if only to see if you are inclined to argue with the author or agree with him. There is some doubt about the fundamental physics – perhaps there are one or two leaps of imagination too far – yet it doesn’t stop in being a book that should be on many more people’s shelves.
Paperback:  
Review by Brian Clegg

Comments

Popular posts from this blog

I, Mammal - Liam Drew *****

It's rare that a straightforward biology book (with a fair amount of palaeontology thrown in) really grabs my attention, but this one did. Liam Drew really piles in the surprising facts (often surprising to him too) and draws us a wonderful picture of the various aspects of mammals that make them different from other animals. 

More on this in a moment, but I ought to mention the introduction, as you have to get past it to get to the rest, and it might put you off. I'm not sure why many books have an introduction - they often just get in the way of the writing, and this one seemed to go on for ever. So bear with it before you get to the good stuff, starting with the strange puzzle of why some mammals have external testes.

It seems bizarre to have such an important thing for passing on the genes so precariously posed - and it's not that they have to be, as it's not the case with all mammals. Drew mixes his own attempts to think through this intriguing issue with the histor…

Foolproof - Brian Hayes *****

The last time I enjoyed a popular maths book as much as this one was reading Martin Gardner’s Mathematical Puzzles and Diversions as a teenager. The trouble with a lot of ‘fun’ maths books is that they cover material that mathematicians consider fascinating, such as pairs of primes that are only two apart, which fail to raise much excitement in normal human beings. 

Here, all the articles have something a little more to them. So, even though Brian Hayes may be dealing with something fairly abstruse-sounding like the ratio of the volume of an n-dimensional hypersphere to the smallest hypercube that contains it, the article always has an interesting edge - in this case that although the ‘volume’ of the hypersphere grows up to the fifth dimension it gets smaller and smaller thereafter, becoming an almost undetectable part of the hypercube.

If that doesn’t grab you, many articles in this collection aren’t as abstruse, covering everything from random walks to a strange betting game. What'…

A Galaxy of Her Own - Libby Jackson ****

This is an interesting book, even if it probably tries to be too many things to too many people. I wondered from the cover design whether it was a children's book, but the publisher's website (and the back of the book) resolutely refuse to categorise it as such. The back copy doesn't help by saying that it will 'inspire trailblazers and pioneers of all ages.' As I belong to the set 'all ages' I thought I'd give it a go.

Inside are featured the 'stories of fifty inspirational women who have been fundamental to the story of humans in space.' So, in some ways, A Galaxy of Her Own presents the other side of the coin to Angela Saini's excellent Inferior. But, inevitably, given the format, it can hardly provide the same level of discourse.

Despite that 'all ages' comment and the lack of children's book labelling we get a bit of a hint when we get to a bookplate page in the form of a Galaxy Pioneers security pass (with the rather worrying…