Skip to main content

Coincidences, Chaos and all that Math Jazz – Edward B. Burger & Michael Starbird ****

It’s not often someone manages to write a book on the topic of maths and makes it light, easy going and fun – yet Edward Burger and Michael Starbird have done just that.
In a relatively slim volume, the authors manage to cover a whole host of topics, without ever becoming terrifying. It’s not just the probability and chaos theory suggested by the title – though of course they make an appearance – but much more. Often, without resorting to formulae, there are simple, clear examples – for example, when dealing with chaos there is a demonstration of how easily number sequences can deviate that uses Excel as the generator of the chaotic sequence.
Again, series are illustrated using a wonderful physical example involving stacking playing cards that seems absolutely impossible if seen through the eyes of common sense – as often is the case with good popular maths, common sense, which is hopeless at maths, takes a battering. There’s a good section on topology too, a subject that is rarely well explained in popular books which tend to make confusing statements like telling the reader that a doughnut is the same topologically as a tea cup without explaining why, or spotting that this is only true of some doughnuts and some cups. Burger & Starbird manage to get the message across while maintaining the precision required for maths.
I do have one hesitation about this book. Because it has such a breezy manner, and speeds through topics so lightly, it can sometimes oversimplify. Sometimes surprising mathematical results are just stated plonkingly, without explaining why it’s the case. Elsewhere, the high speed delivery results in information that is only partially true. Take the example of airline safety. After pointing out how easy it is to misuse statistics, this is arguably what the authors proceed to do. They compare deaths per passenger mile by plane and deaths per passenger mile by car. But this overlooks the fact that more fatal crashes take place in the take off/climb and descent/landing parts of the journey than do in the cruise segment – distance isn’t the issue with airline crashes, it’s number of take-offs and landings.
If, instead, you make a comparison of the chance of being killed on a single journey in a plane with the chance of being killed on a single journey in a car (and most people want to know “will I survive this journey?”), then the car is actually safer. Taken over a year, of course, there are many more car journeys, so the plane becomes safer – but the difference between the two modes of transport is much less significant than basing the comparison on deaths per mile. The authors also take a rather parochial view, arguing that if people didn’t fly they would drive. This may be true in the US, but in most of the world, the long distance alternative is likely to be don’t go at all, or go by train. Try driving from London to New York. This, then, was an unfortunate example to use, because it hides a huge can of worms.
Such problems, though, are few and far between. This a great across-the-board intro to the fun of maths. Having read it, I would then recommend the reader to find a good popular book to get more depth on any topics of interest (for instance, my own A Brief History of Infinity inevitably goes into a lot more than is possible in this book’s short dabble with infinity) – but do start here.
Paperback:  
Review by Brian Clegg

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Jim Baggott - Four Way Interview

Jim Baggott is a freelance science writer. He trained as a scientist, completing a doctorate in physical chemistry at Oxford in the early 80s, before embarking on post-doctoral research studies at Oxford and at Stanford University in California. He gave up a tenured lectureship at the University of Reading after five years in order to gain experience in the commercial world. He worked for Shell International Petroleum for 11 years before leaving to establish his own business consultancy and training practice. He writes about science, science history and philosophy in what spare time he can find. His books include Atomic: The First War of Physics and the Secret History of the Atom Bomb (2009), Higgs: The Invention and Discovery of the ‘God Particle’ (2012), Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields (2017), and, most recently, Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe (2018). For more info see: www…

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…