Skip to main content

Broken Genius – Joel Shurkin *****

We are used to tales of the billionaire geniuses of Silicon Valley – this gripping scientific biography gives a balanced picture of the most bizarre and atypical of the great names of electronics, William Shockley.
Still widely thought of as the “father of the transistor”, Shockley’s role in the nascent electronics industry was much more complex. Consider two simplistic and frequently parroted versions of the Shockley myth. William Shockley was the man who invented the transistor. Wrong. Alternatively, Shockley had nothing to do with the invention of the transistor, but managed to bulldoze his way into the limelight, refusing to allow the real inventors to get visibility and muscling in on their Nobel prize. Also wrong.
Joel Shurkin, with access to a huge archive of material, takes us back through Shockley’s coldly administered childhood to his discovery of the joys of quantum mechanics, and the possibility of practical application of the theory to solid state electronics to replace the fragile and errant valve (vacuum tube). In those early years it became apparent that Shockley truly had an element of genius – he could see solutions instantly that others would take an age to work out, particularly in the statistical field. Probability and statistics are essential to quantum theory, and also to Shockley’s work during World War II, which, inspired by the British physicist Blackett’s development of Operational Research, resulted in Shockley and others producing the US equivalent, Operations Research – effectively the application of mathematical techniques to problem solving.
This problem solving aspect would remain with Shockley as he moved on to the next phase of his life and the Nobel prize for the development of the transistor. Here the complexity arises. The work resulting in the prize was largely done by Bardeen and Brattain. Although some of the original theory was Shockley’s there were plenty of others who could be included on that basis. His role in the actual project was as a hands-off project manager. Shurkin shows, though, that however unwarranted the award, B&B’s original transistor design was hardly practical, where the first effective design of a totally different kind of transistor was Shockley’s.
After the transistor, Shockley set up his own company which effectively started Silicon Valley, both in its location, and in its initial staff, who would go on to seed many of the hardware names of the Valley, notably including the founders of Intel. Shockley’s company was a failure, thanks to his bizarre management style that seemed to expect everyone in the organization to be his mental inferior. He then went on to totally destroy his reputation by discussing his belief that intelligence was hereditary, and it was important for the survival of the race that we prevent too much breeding from those with low intelligence (and, he implied, of inferior races).
One aspect of Shockley’s argument is true. The building blocks of intelligence are genetic (though what you do with that intelligence is largely influenced by environment). But that doesn’t mean, as many seemed to assume, that the children of people who haven’t done very well for themselves aren’t going to be intelligent. For that matter it doesn’t mean that intelligent parents will have intelligent children – simply that the child’s mental capabilities are determined by a combination of genes from both parents. Shockley, perhaps rightly upset by the way the social sciences tried to pretend there was nothing even to think about in the genetic aspect of intelligence, reacted by getting more extreme, and digging himself a pit from which he would never escape. Fatally, he not only supported the idea that the intelligence of an individual is linked to his or her genes, but also the unfounded concept that different racial and social groups have different levels of intelligence. It was, as Shurkin points out, a classical example of hubris resulting in nemesis.
The only fault in an otherwise great page-turner of a scientific biography is that Shurkin is either a little unsure of his history of science, or in the attempt to simplify to make the book readable (and it certainly is readable), he takes some of the facts over the border between simplicity and inaccuracy. For instance, he makes it sound as if Young was the first to challenge Newton’s idea of light being particles, where in fact there were plenty of Newton’s contemporaries like Huygens who believed light was a wave. In another example, we are told that Gilbert Lewis, who coined the word photon, was a British physicist. In fact he was an American chemist.
But this is a minor problem, and mostly occurs in the early part of the book where the scientific background is established. Shurkin had a dream subject in a man with such strong conflicting characteristics – and he made the most of it. After reading this book you’ll have a better idea of where Silicon Valley came from, but more importantly you’ll have an insight into the nature of an important scientist who is almost always described as a caricature of the real man.

Recommended.


Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Peter Wothers - Four Way Interview

Dr Peter Wothers is a Teaching Fellow in the Department of Chemistry, University of Cambridge, and a Fellow and Director of Studies in Chemistry at St Catharine's College. He is heavily involved in promoting chemistry to young students and members of the public, and, in 2010, created the popular Cambridge Chemistry Challenge competition for students in the UK. Peter is known nationally and internationally for his demonstration lectures and presented the Royal Institution Christmas Lectures, titled The Modern Alchemist, in 2012. In 2014, he was awarded an M.B.E. for Services to Chemistry in the Queen's Birthday Honours.. His new book is Antimony, Gold and Jupiter's Wolf.

Why chemistry?

I’ve been pretty much obsessed with chemistry from about the age of 8.  I built up quite a substantial home laboratory with all sorts of things that are (quite rightly) banned now (such as white phosphorus) and also used to go to second-hand bookshops to find chemistry texts.  Eventually I boug…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …