Skip to main content

Broken Genius – Joel Shurkin *****

We are used to tales of the billionaire geniuses of Silicon Valley – this gripping scientific biography gives a balanced picture of the most bizarre and atypical of the great names of electronics, William Shockley.
Still widely thought of as the “father of the transistor”, Shockley’s role in the nascent electronics industry was much more complex. Consider two simplistic and frequently parroted versions of the Shockley myth. William Shockley was the man who invented the transistor. Wrong. Alternatively, Shockley had nothing to do with the invention of the transistor, but managed to bulldoze his way into the limelight, refusing to allow the real inventors to get visibility and muscling in on their Nobel prize. Also wrong.
Joel Shurkin, with access to a huge archive of material, takes us back through Shockley’s coldly administered childhood to his discovery of the joys of quantum mechanics, and the possibility of practical application of the theory to solid state electronics to replace the fragile and errant valve (vacuum tube). In those early years it became apparent that Shockley truly had an element of genius – he could see solutions instantly that others would take an age to work out, particularly in the statistical field. Probability and statistics are essential to quantum theory, and also to Shockley’s work during World War II, which, inspired by the British physicist Blackett’s development of Operational Research, resulted in Shockley and others producing the US equivalent, Operations Research – effectively the application of mathematical techniques to problem solving.
This problem solving aspect would remain with Shockley as he moved on to the next phase of his life and the Nobel prize for the development of the transistor. Here the complexity arises. The work resulting in the prize was largely done by Bardeen and Brattain. Although some of the original theory was Shockley’s there were plenty of others who could be included on that basis. His role in the actual project was as a hands-off project manager. Shurkin shows, though, that however unwarranted the award, B&B’s original transistor design was hardly practical, where the first effective design of a totally different kind of transistor was Shockley’s.
After the transistor, Shockley set up his own company which effectively started Silicon Valley, both in its location, and in its initial staff, who would go on to seed many of the hardware names of the Valley, notably including the founders of Intel. Shockley’s company was a failure, thanks to his bizarre management style that seemed to expect everyone in the organization to be his mental inferior. He then went on to totally destroy his reputation by discussing his belief that intelligence was hereditary, and it was important for the survival of the race that we prevent too much breeding from those with low intelligence (and, he implied, of inferior races).
One aspect of Shockley’s argument is true. The building blocks of intelligence are genetic (though what you do with that intelligence is largely influenced by environment). But that doesn’t mean, as many seemed to assume, that the children of people who haven’t done very well for themselves aren’t going to be intelligent. For that matter it doesn’t mean that intelligent parents will have intelligent children – simply that the child’s mental capabilities are determined by a combination of genes from both parents. Shockley, perhaps rightly upset by the way the social sciences tried to pretend there was nothing even to think about in the genetic aspect of intelligence, reacted by getting more extreme, and digging himself a pit from which he would never escape. Fatally, he not only supported the idea that the intelligence of an individual is linked to his or her genes, but also the unfounded concept that different racial and social groups have different levels of intelligence. It was, as Shurkin points out, a classical example of hubris resulting in nemesis.
The only fault in an otherwise great page-turner of a scientific biography is that Shurkin is either a little unsure of his history of science, or in the attempt to simplify to make the book readable (and it certainly is readable), he takes some of the facts over the border between simplicity and inaccuracy. For instance, he makes it sound as if Young was the first to challenge Newton’s idea of light being particles, where in fact there were plenty of Newton’s contemporaries like Huygens who believed light was a wave. In another example, we are told that Gilbert Lewis, who coined the word photon, was a British physicist. In fact he was an American chemist.
But this is a minor problem, and mostly occurs in the early part of the book where the scientific background is established. Shurkin had a dream subject in a man with such strong conflicting characteristics – and he made the most of it. After reading this book you’ll have a better idea of where Silicon Valley came from, but more importantly you’ll have an insight into the nature of an important scientist who is almost always described as a caricature of the real man. Recommended.
Paperback:  
Also on Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

UFO Drawings from the National Archives - David Clarke ***

This is a lovely little book that, sadly, not every reader will see the point of. If somebody’s anecdotal account of a presumed alien encounter is obviously a misperception of a mundane occurrence, or else too vague – or too far-fetched – to be taken seriously, then it’s all too easy to dismiss it as worthless. But that’s missing the point. The fact that so many incidents are reported in these terms makes the witnesses’ testimony worthy of serious study – to teach us, not about extraterrestrial civilisations, but about our own culture.

That was the core message of David Clarke’s excellent How UFOs Conquered the World published a couple of years ago. Now Clarke is back with another take on the same basic theme.  His day job is Reader and Principal Lecturer in Journalism at Sheffield Hallam University, but for the last ten years he’s also acted as consultant for the National Archives project to release all of Britain’s official Ministry of Defence (MoD) files on UFOs. Throughout the Cold…

Crashing Heaven (SF) - Al Robertson ****

There's an engaging mix of powerful thriller and science fiction in this impressive novel. After the Earth has been rendered uninhabitable, human life is limited to vast space station. Our central character, Jack, has a symbiotic artificial intelligence, Hugo Fist, designed to destroy other AIs in a mysterious collective that is said to have committed an atrocity - but with a kick in the tail that because of an unbreakable contract, Fist will take over Jack's body in a few weeks' time.

Al Robertson packs remarkable technology concepts into the cyber side of this story, from AI corporations that act as a pantheon of gods to the 'puppet' that is Fist (he usually come across as a virtual cross between Mr Punch and an evil ventriloquist's dummy). Robertson does all the cyber stuff so well that it's easy to miss that this is, in effect, a myth in electronic clothing - you could substitute the myths of 'real' Greek gods and magic for what happens here. Alt…

The Science of Food - Marty Jopson ****

This is a tasty little volume, packed with kitchen-based science. I must admit, when I saw that the author was the One Show's science expert and Marty Jopson's author photo has that 'Hey, I'm a mad scientist, kids!' look, my heart fell - I was sure the book would be the written equivalent of a 'Wow, look, aren't I clever, I can make this go bang!' science show - but, in fact, it's packed full of (appropriately) meaty scientific content.

I was really pleased that Jopson didn't stick purely to the chemistry of cooking, but launched with the working of some familiar kitchen gadgets - there was genuinely fascinating reading to be had about apparently humdrum equipment in the form of the physics and materials science of a knife and chopping board. And Jopson took us into industrial kitchens too, to reveal, for example, the remarkable process required to make puffed wheat.

Inevitably, the chemistry of cooking - how, for example, proteins denature and em…