Skip to main content

Quantum Theory Cannot Hurt You – Marcus Chown *****

Some while ago, one of www.popularscience.co.uk’s readers asked for some advice. He’d read our dismissive review of The Dancing Wu Li Masters and wondered if we could recommend an alternative as a good introduction to the amazing world of quantum theory. To be honest, we struggled. There are some reasonable books around, but they’re mostly quite dated, and none of them are top notch popular science. Luckily, though, Marcus Chown has come to our aid with Quantum Theory Cannot Hurt You, simply the best and most readable overview of the quantum world, with a great high level overview of general relativity thrown in as a bonus.
Right from the beginning you know that Chown is going to make this an interesting ride. He hits you between the eyes with some of the mind-boggling consequences of quantum physics and relativity, then takes the reader spiralling into the sub-atomic world to explore the nature of matter and the seemingly impossible behaviour of quantum particles that insist on being in more than one place at a time, in jumping over insuperable barriers and in making impossibly complex calculations trivial. All the half-familiar armoury of the quantum world, from Heisenberg’s Uncertainty Principle, to superfluids, slots into place as step-by-step Chown builds a readily comprehensible picture of what is going on all around us, if only we could see into the world of individual atoms and photons of light.
Barely pausing for breath, Chown then does a Matrix-like blast into space, going from concentrating on the very small to the universal implications of relativity. Building steadily on the critical assumption of the unchangeable speed of light (in a vacuum), we find E=mc2 popping into place, and the rapid transition from the strange concepts of special relativity to the universal impact of general relativity and its implications for gravity. Chown eloquently demonstrates that “the force of gravity does not exist” in a similar way to the realization the centrifugal force does not exist. Each is just the tendency of objects to carry on moving the same way unless forced to do otherwise by being restricted by the environment about them, rather than a true force.
By the end of the book, quantum theory and relativity will no longer seem a mystery. You might not be an expert – inevitably some of the topics are glossed over with some of the subtlety slightly distorted, but the big picture is just right. It’s interesting that Chown manages this without using any of the over-fancy diagrams plaguing many recent books on these subjects – he uses great word pictures to do away with the need for illustrations.
If there’s any moan here it’s the bit of cosmology that seems rather tacked on in the last chapter. While relativity is relevant to theories of how the universe has expanded, cosmological concerns are something of a tangential topic, and we end up with very quick overviews of the big bang, dark matter, inflation etc. which don’t feel quite as superb as the rest of the book. I’d rather have lost these and had more detail on some of the more central topics. But that is a very small point.
Overall, anyone who is baffled by quantum theory or relativity – anyone who wants a guide that doesn’t assume you know anything, but doesn’t patronize – should run, not walk, to the bookstore and lay their hands on Quantum Theory Cannot Hurt You.
Paperback:  
Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…