Skip to main content

The Little Book of Scientific Principles, Theories & Things – Surendra Verma *****

This is an absolutely delightful little book. (I say “little” largely because that’s what the title says. It’s as wide as any normal paperback, and not overly slim at 222 pages. It’s just a little vertically challenged. The idea is simple, but effective. It contains 175 theories or key principles in science. Each gets one (or occasionally two) pages, stating what it is and giving some background.
Put as bluntly as that, it doesn’t sound very exciting – but Surendra Verma makes each little section a vignette that brightly illuminates both the idea itself and the people who were responsible for it. We get little glimpses into people’s lives – it’s an entertaining scientific peepshow that works wonderfully well.
At first sight, some of the entries are a bit scary. Unlike Stephen Hawking, Verma takes no notice of the infamous advice that every equation halves the numbers of readers. The introduction to each section, which says what the principle is before going on to put it in context and explain it, quite often does contain an equation or two. But this really shouldn’t put anyone off – there’s no need to understand what’s going on, and for those who want a little more depth it’s very useful.
The different topics come in chronological order. Many are familiar, but every now and then there’s a total left fielder that takes the reader by surprise. Although the book doesn’t read through with any continuity, it’s not just a dip-in book (though it works nicely this way), it’s easy to keep reading just one more… and just one more… and suddenly a half hour has passed by.
Occasionally the need to fit into a small space does compromise the value of the information. Take Galois’ Theory. It is described as “The study of solutions of some equations and how different solutions are related to each other”, which is so vague it could just as easily be a definition of algebra. We’re told it’s a brilliant and complex theory, and that it can be used to solve classical mathematical problems like “Which regular polygons can be constructed by ruler and compass?” (now there’s a problem we all meet every day), but unfortunately because Galois himself has such a dramatic story, the rest of the page is taken up with his (short) life, and we never really find out what his theory is, or what it can do that makes it worth including in the list. This is a rarity, though – most of the entries are concise, useful and easy to follow. (A couple don’t quite hit the mark. When describing Young’s work on light, Verma says that according to quantum theory, light is “transported in photons that are guided along their paths by waves”, which sounds more like the outdated pilot wave theory than modern quantum theory. But again, such moments are in the minority.)
I really do recommend buying this book and launching yourself into a sea of scientific wonder. Sometimes you will discover discredited ideas, like Lamarck’s theories of heredity, or Ptolemy’s earth-centred universe. At other times, you might find memories from school stimulated, as you revisit Boyle’s law or Newton’s laws of motion. Or you could come across something fresh and delightful (only you can say which these will be, but there are going to be some). This is a book that would be great for anyone studying science at school, to give some enjoyable background to what can be a boring procession of facts and figures, but equally it will provide amusement and entertainment for anyone with an interest in science. You won’t always agree with the choice of content – but that’s always part of the delight of such lists. Enjoy.
Paperback:  
Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…